期刊文献+

Diophantine inequality involving binary forms

Diophantine inequality involving binary forms
原文传递
导出
摘要 Let d ≥ 3 be an integer, and set r = 2^d-1 + 1 for 3 ≤ d ≤ 4, r = 17 5~ "2441 for 5 ≤ d ≤ 6, r = d^2+d+1 for 7 ≤ d ≤ 8, and r = d^2+d+2 for d ≥ 9, respectively. Suppose that Фi(x, y) E Z[x, y] (1 ≤ i ≤ r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,. ..., λr are nonzero real numbers with λ1/λ2 irrational, and λ1λ1(x1, y1) + λ2q)2(x2, y2) + ... + ),λrФr(xr, yr) is indefinite. Then for any given real η and σ with 0 〈 cr 〈 22-d, it is proved that the inequalityhas infinitely |r∑i=1λФi(xi,yi)+η|〈(max 1≤i≤r{|xi|,|yi|})^-σmany solutions in integers Xl, x2,..., xr, Yl, Y2,.--, Yr. This result constitutes an improvement upon that of B. Q. Xue. Let d ≥ 3 be an integer, and set r = 2^d-1 + 1 for 3 ≤ d ≤ 4, r = 17 5~ "2441 for 5 ≤ d ≤ 6, r = d^2+d+1 for 7 ≤ d ≤ 8, and r = d^2+d+2 for d ≥ 9, respectively. Suppose that Фi(x, y) E Z[x, y] (1 ≤ i ≤ r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,. ..., λr are nonzero real numbers with λ1/λ2 irrational, and λ1λ1(x1, y1) + λ2q)2(x2, y2) + ... + ),λrФr(xr, yr) is indefinite. Then for any given real η and σ with 0 〈 cr 〈 22-d, it is proved that the inequalityhas infinitely |r∑i=1λФi(xi,yi)+η|〈(max 1≤i≤r{|xi|,|yi|})^-σmany solutions in integers Xl, x2,..., xr, Yl, Y2,.--, Yr. This result constitutes an improvement upon that of B. Q. Xue.
作者 Quanwu MU
机构地区 School of Science
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第6期1457-1468,共12页 中国高等学校学术文摘·数学(英文)
关键词 Diophantine inequality Davenport-Heilbronn method binary form Diophantine inequality, Davenport-Heilbronn method, binary form
  • 相关文献

参考文献1

二级参考文献15

  • 1Baker R C. Cubic diophantine inequalities. Mathematika, 1982, 29: 83-92.
  • 2Baker R C, Briidern J, Wooley T D. Cubic diophantine inequalities. Mathematika, 1995, 42: 264-277.
  • 3Browning T D. Quantitative Arithmetic of Projective Varieties. Progress in Math, Vol 277. Basel: Birkhauser, 2009.
  • 4Browning T D, Dietmann R, Elliott PDT A. Least zero of a cubic form. Math Ann, 2012, 352: 745-778.
  • 5Briidern J. Cubic diophantine inequalities. Mathematika, 1988, 35: 51-58.
  • 6Briidern J. Cubic diophantine inequalities (II). J Lond Math Soc, 1996, 53(2): 1-18.
  • 7Briidern J. Cubic diophantine inequalities (III). Periodica Mathematica Hungarica, 2001, 42(1-2): 211-226.
  • 8Cook R J. The value of additive forms at prime arguments. J Theor Nombres Bordeaux, 2001, 13: 77-91.
  • 9Davenport H. Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd ed. Cambridge: Cambridge University Press, 2005.
  • 10Davenport H, Heilbronn H. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部