摘要
Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.
Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.