期刊文献+

Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition
原文传递
导出
摘要 Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f. Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.
作者 Hao WEN
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第6期1469-1481,共13页 中国高等学校学术文摘·数学(英文)
关键词 Asymptotic estimate residue pairing Asymptotic estimate, residue pairing

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部