期刊文献+

一种改进的噪声图像语义分割方法 被引量:4

An improved semantic segmentation method for noisy image
原文传递
导出
摘要 在图像的获取和传输过程中,可能会出现噪声,它不仅破坏了图像的真实信息,而且严重影响了图像的视觉效果。因此,噪声图像的语义分割成为图像分析中最具挑战性的问题之一。为了提高噪声图像的分割性能,本文在分析全卷积网络(FCN)的基础上,提出一种改进的FCN模型(IFCN)对噪声图像语义分割。该算法采用一种新的中值池化方法代替卷积神经网络的最大值池化,可以在去除噪声的同时保留更多边缘信息。在训练整个深度网络时,通过反向传播算法以一种直接的端到端,像素到像素的方式映射。实验结果表明,提出的模型在PASCAL VOC2012数据集上对噪声图像语义分割可以获得比较好的分割效果,准确率mean IU达到86.5%。 Noise may be arisen in the capturing and transmission process of the i mage,which not only corrupts the true information of an image,but also seriously affects the visual effects of the image.Therefore,th e semantic segmentation of noisy images becomes one of the most challenging problems in image analysis.In order to improve the segmentation performance of noisy image,based on the analyses of fully convolutional network (FCN) and the deep convolutional neural network (DCNN),we propose an improved F CN model (IFCN) for semantic segmentation of noisy images.The algorithm introduces a new median pooling method instead of the commonly used max pooling method in convolutional neural network (CNN),which can remove noise and preserve more boundaries information.Our model trains the whole deep network by a direct end-to-end,pixels-to-pi xels mapping way with the back propagation algorithm.By fine-tuning the network structure and adjusting the different parameters,respe ctively,we train and test images with salt and pepper noise and gaussian noise.Experimental results show that the proposed model can achieve a better performance for semantic segmentation of noisy images on Pascal VOC2012dataset,and the accuracy of mean IU is 86.5%, which indicates the effectiveness of the method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第12期1372-1377,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61305014) 上海市科学技术委员会科研计划项目(15590501300)资助项目
关键词 语义分割 IFCN 中值池化 去噪 semantic segmentation IFCN median pooling denoising
  • 相关文献

参考文献2

二级参考文献12

  • 1Hou J,Tian J,Liu J.Animproved wienerchop algorithmfor image de-noising[].ProcIEEEInt Conf Commun Circuits Syst.2005
  • 2Sahraeian S ME,Marvasti F,Sadati N.Wavelet image denoising based on improved thresholding neural network and cycle spinning[].IEEEInt Conf Acoust Speech and Signal Process.2007
  • 3Corbaln L,Osella Massa G,Russo C,et al.Image recovery using a newnonlinear adaptivefilter based on neural networks[].thInt Conf Inf Technol Interfaces.2006
  • 4SONGShao-zhong,ZHANGLi-biao,Shu-hua.The application of parti-cle swarmoptimization algorithmintraining Forward Neural Network[].th Int Conf Softw Eng Artif Intell Netw Parallel/Distributed Comput.2007
  • 5Kazubek,M.Wavelet domain image denoising by thresholding and wiener filtering[].IEEE Signal Processing Letters.2003
  • 6HAYKIN S.Neural networks-a comprehensive founda-tion[]..1999
  • 7Kadir Liano.Robust Error Measure for Supervised Neural Network Learning with Outliers[].IEEE Transactions on Neural Networks.1996
  • 8Kennedy,J,Eberhart,RC.Particle swarm optimisation[].Proc IEEE Int Conf Neural Netw.1995
  • 9SHI Y,EBERHART R.A modified particle swarmoptimizer[].Proceedings of IEEE WorldCongress on Computational Intelligence.1998
  • 10吴继明,朱学峰,熊建文,鲍苏苏.图像分割中局部能量驱动的快速主动轮廓模型[J].光电子.激光,2010,21(1):140-143. 被引量:5

共引文献11

同被引文献17

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部