期刊文献+

磁场对周期性极化铌酸锂晶体中产生的窄带太赫兹波的控制研究

Magnetic field modulation on narrowband terahertz wave in photorefractive periodically poled lithium niobate crystal
原文传递
导出
摘要 本文利用飞秒激光作用于光折变周期性极化铌酸锂(PPLN)晶体和掺镁(Mg)的PPLN(PPMg:LN)晶体通过光整流效应产生窄带太赫兹(THz)辐射,通过外加磁场的办法对THz脉冲串的振幅和寿命进行有效控制。随着外加磁场的增强,在光折变PPLN晶体中产生的THz波的振幅和寿命都随之减小;当外加磁场足够强时,光折变PPLN晶体中产生的THz波将完全被抑制。外加磁场之所以能够对THz波的振幅和寿命进行有效控制,主要是由于洛伦兹力的作用使光折变晶体内部产生了空间电荷场。 The generation and detection of narrowband terahertz (THz) wave based on photorefractive periodically poled lithium niobate (PPLN) and periodically poled Mg:LiNb3(PP-Mg:LN) crystal are realized by optical recti fication.By changing the size and direction of the applied magnetic field,the effective mod ulation on the amplitude of the narrowband THz wave is achienved in photorefractive PPLN crysta l.With the increase of the applied magnetic field,the amplitude of narrowband THz wave in the photorefractive PPLN crystal is supressed. When the applied magnetic field is sufficiently strong,narrowband THz wave in t he photorefractive PPLN crystal can be completely suppressed.For PP-Mg:LN cryst al,a completely different phenomenon of the THz wave is observ ed.The oscillation of the generated THz wave does not produce any changes,either with or without the magnetic field.The magnetic field modulation of THz wave in the photorefractive PPLN crystal comes from the buildup of a space-charge fiel d through Lorentz force.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第12期1384-1389,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(11647023,11304186) 上海市自然科学基金(17ZR1411500) 上海市教委高校青年教师培养基金(ZZsdl15106,ZZsdl15109) 山东省科技发展计划(2015GGX101017) 广东省特种光纤材料与器件工程技术研究开发中心开放基金资助(H2016-039) 上海电力学院人才引进基金(K2014-028)资助项目
关键词 光抽运-光探测 太赫兹(THz)波 周期性极化铌酸锂(PPLN) 磁场 optical pump-optical probe terahertz (THz) wave periodically poled lithium niobate(PPLN) magnetic field
  • 相关文献

参考文献3

二级参考文献50

  • 1Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, IEEE Electron. Dev. Left. 23, 573 (2002).
  • 2J. B. Gunn and C. A. Hogarth, J. Appl. Phyics 26, 353 (1955).
  • 3P. J. Bulman, G. S. Hobson, and B. C. Taylor, Trans- ferred Electron Devices (Academic Press, London and New York, 1972).
  • 4P. Das and R. Bharat, Appl. Phys. Lett. 11, 386 (1967).
  • 5A. F. Gibson, T. W. Granville, and E. G. S. Paige, J. Phys. Chem. Solid 19, 198 (1961).
  • 6R. Kamoua, H. Eisele, and G. I. Haddad, Solid State Electron. 36, 1547 (1993).
  • 7M. F. Zybura, S. H. Jones, B. W. Lim, J. D. Crowley, and J. E. Carlstrom, Solid State Electron. 39~ 547 (1996).
  • 8C. Benz and J. Freyer, Electron. Lett. 34, 2351 (1998).
  • 9Z. Chu, J. Liu, and K. Wang, Chin. Opt. Lett. 8, 697 (2010).
  • 10P. Zhou and D. Fan, Chin. Opt. Lett. 9, 051902 (2011).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部