期刊文献+

基于修正型粒子群算法的智能音乐作曲研究 被引量:3

Study on the Intelligent Music Composition Based on Modified Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对传统作曲算法存在速度慢、工作量大的缺点,本文将修正型粒子群算法引入音乐作曲,通过音级、拍数时值和音符的编码实现音乐的数值编码,选择对口组、非对口组和专业组的加权评价结果为适应度函数,以区域内部均匀性测度(UM)、区域间对比度(GC)以及综合测度等三个指标作为评价智能音乐作曲效果指标,提出一种基于修正型粒子群算法的智能音乐作曲。结果表明,该算法具有作曲速度快、质量高的优点,有助于曲作者音乐创作,极大地降低工作量,具有一定的推广价值。 In view of the shortcomings of slow speed and large workload in a traditional music algorithm, this paperintroduced the particle swarm optimization algorithm into a music creation to realize a music numerical codes by way of thesound level, rhythm duration and note codes to select the weighted evaluation results from the counterpart, non-counterpartand professional groups as effect index, and take uniformity measure (UM) in the region, regional contrast (RC) and thecomprehensive measure as evaluation index for an intelligent music composition effect to propose the intelligent musiccomposition based on the modified particle swarm optimization algorithm. The experimental results showed that thealgorithm possessed the advantages of fast speed, high quality and can help the composer create the music and reduce theirworkload. This method has certain promotion value.
作者 崔峰
出处 《山东农业大学学报(自然科学版)》 CSCD 2017年第6期922-925,共4页 Journal of Shandong Agricultural University:Natural Science Edition
基金 2015年陕西省教育科学十二五(SGH13231) 2016年陕西省渭南师范学院人文社科类项目(16SKYM30)
关键词 粒子群算法 智能音乐 作曲 Particle swarm optimization algorithm intelligent music composition
  • 相关文献

参考文献2

二级参考文献10

  • 1张英俐,刘弘,李少辉.遗传算法在作曲中的应用[J].计算机应用研究,2005,22(11):143-145. 被引量:7
  • 2冯寅,周昌乐.算法作曲的研究进展[J].软件学报,2006,17(2):209-215. 被引量:34
  • 3Papadopoulos G,Wiggins G.A genetic algorithm for the generation of Jazz melodies[C]//Procedings of the Music Informatics Research Group,1998.
  • 4Mozer M C.Neural network composition by prediction:exploring the benefits of psychophysical constraints and multiscale processing[J].Cognitive Science,1994,6:247-280.
  • 5Gartland-Jones A.Can a genetic algorithm think like a composer[C]//5th International Conference on Generative Art,11-13 December,2002.
  • 6Cohen H.A self-defining game for one player:on the nature of creativity and the possibility of creative computer programs[J].Leonardo,2002,35(1):59-64.
  • 7Ayesh A,Hugill A.Genetic approaches for evolving form in musical composition[J].Artificial Intelligence and Applications,2005:318-321.
  • 8柏西·该丘斯.应用对位法(上卷)创意曲[M].北京:人民音乐出版社,1986.
  • 9陈明.基于进化遗传算法的优化计算[J].软件学报,1998,9(11):876-879. 被引量:30
  • 10刘丹,张乃尧,朱汉城.音乐特征识别的研究综述[J].计算机工程与应用,2002,38(24):74-77. 被引量:28

共引文献5

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部