期刊文献+

基于广义测度函数的微分系统稳定性分析

Stability Analysis of Differential Systems with a Generalized Measuring Function
下载PDF
导出
摘要 给出一种利用广义测度函数研究微分系统平衡位置稳定性和渐近稳定性的新方法。该方法避免构造备选李雅普诺夫函数所带来的困难,同时该方法也适用于研究微分系统零解的稳定性问题。最后,用例子验证本文结论的有效性。 This paper gives the sufficient conditions to the stability and asymptotic stability of a differential system by generalized measuring function, which also can be used in the study of stability for the zero solution. This new method can avoid the difficulty in constructing the Lyapunov function. At last, the conclusion is verified by a simple example.
出处 《贵州大学学报(自然科学版)》 2017年第6期1-3,共3页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(11571208) 山东省高校科技计划项目资助(J16LI13) 齐鲁师范学院2015年大学生科研基金项目资助(XS2015L05)
关键词 广义测度函数 稳定 渐近稳定 generalized measuring function stability asymptotical stability
  • 相关文献

参考文献1

二级参考文献8

  • 1宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011.
  • 2Shair Ahmad,Alanc Lazer.Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system[J].Nonlinear Analysis,2002,40(1):37-49.
  • 3Shair Ahmad,Ivanka M Stamova.Asympotic stability of N-dimensional impulsive competitive system[J].Nonlinear Analysis,2007,8(2):654-663.
  • 4Zhao Jingdong,Guo Xin,Han zhixia,et al.Average conditions for competitive system in a nonautonomous two dimensional Lotka-Volterra system[J].Mathematical and Computer Modeling,2013,57(5):1131-1138.
  • 5Tang S Y,Xiao Y N,Chen L,et al.Integrated pest management models and the dynamical behavior[J].Bulletin of Mathematical Biology,2005,67(1):115-135.
  • 6Tang S Y,Chen L.Modelling and analysis of integrated pest management strategy[J].Discrete and Continuous Dynamics System,2004,4(3):759-768.
  • 7Albert C Luo J.A theory for n-dimensional nonlinear dynamics on continuous vector fields[J].Communications in Nonlinear Science and Numerical Simulation,2007,12(2):117-194.
  • 8Albert C Luo J.Continuous Dynamical Systems[M].Beijing:Higher Education Press,2012.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部