期刊文献+

视觉显著性纹理--色彩特征融合的图像目标分类 被引量:7

Vision saliency texture-color feature fusion basedobject classification
下载PDF
导出
摘要 针对图像目标分类,提出了一种显著性纹理特征。考虑到显著目标图像在纹理特征表征上的优势,在目标显著性图像提取的基础上进一步提取视觉显著性纹理特征。进而将该视觉显著性纹理特征同HSV色彩特征进行融合,形成图像目标融合特征,输入至后端分类器中进行分类。多类别的交叉实验证明,基于该融合特征的目标分类方法能够较为准确的对图像目标进行分类,在SIMPLIcity图像数据集上平均分类正确率达到84.84%,在Corel图像集上平均分类正确率为85.05%,优于基于单一分类特征的图像分类方法。 In order to improve the performance of the image classification, a novel saliency texture feature is proposed. Considering the advantage of the saliency map for representing the texture information, the saliency texture feature is extracted based on the saliency map. This feature is further fused with the HSV color feature, generating a fused image feature which is inputted into the classifier. Results of cross-over experiments demonstrate that the fused feature works better than the compared counterpart and has the ability to correctly recognize the image objects. The imageelassification precision rates of the proposed method in SIMPLicity and Corel5k databases achieved 84.84% and 85. 05%, respectively.
出处 《电子测量技术》 2017年第11期94-98,共5页 Electronic Measurement Technology
关键词 图像目标分类 显著图 特征融合 纹理特征 色彩特征 image classification saliency map feature fusion texture feature color feature
  • 相关文献

参考文献10

二级参考文献127

  • 1林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 2Delponte E, Noceti N, Odone F, et al. Appearance-based 3d object recognition with time-invariant features [C]// 14th International Conference on Image Analysis and Processing, Modena, Sept 10-14, 2007. Washington D C: IEEE, 2007: 467-474.
  • 3ZHAI Jun-hai, WANG Xi-zhao, ZHANG Su-fang, et al. View-based 3d object recognition using wavelet multiscale singular-value decomposition and support vector machine [C]// Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, Nov 2-4, 2007. Washington D C: IEEE, 2007: 1428-1432.
  • 4Yang M -H, Roth D, Ahuja N. Learning to recognize 3d objects with snow [C]// Proceedings of the 6th European Conference on Computer Vision-Part Ⅰ, Ireland, Dublin, June 26-July 1, 2000. London, UK: Springer-Verlag, 2000: 439-454.
  • 5Delponte E, Noceti N, Odone F, et al. Spatio-tempoml constraints for matching view-based descriptions of 3d objects [C]// Eighth International Workshop on Image Analysis for Multimedia Interactive Services, Santorini, June 6-8, 2007. Washington DC: IEEE, 2007: 22-25.
  • 6Murase H, Nayar S K. Visual learning and recognition of 3-d objects from appearance [J]. International Journal of Computer Vision(S0920-5691), 1995, 14(1): 5-24.
  • 7Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 8Roth Dan, Yang Ming-Hsuan, Ahuja Narendra. Learning to recognize three-dimensional objects [J]. Neural Computation (S0899-7667), 2002, 14(5): 1071-1103.
  • 9Stricker Markus A, Orengo Markus. Similarity of color images [J]. Proe. of SPIE, 1995, 2420:381-392.
  • 10Haralick Robert M, Shanmugam K, Dinstein Its'Hak. Textural features for image classification [J]. IEEE Transactions on Systems, Man and Cybernetics(S0018-9472), 1973, 3(6): 610-621.

共引文献152

同被引文献65

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部