期刊文献+

气动挤压式3D打印食品单层单道形貌预测研究 被引量:5

Research on Morphology Prediction of Food 3D Printing in Pneumatic Extrusion
原文传递
导出
摘要 成形层形貌稳定性严重影响样件外观质量,探索研究成形形貌预测方法对实现食品打印稳定、快速成形具有重大意义。通过搭建气动挤压式食品增材制造平台,采用Design Expert软件设计试验,将二次回归通用旋转设计分析应用于单层单道食品3D打印形貌预测,建立了回归模型并进行显著性校验,确定了单层单道食品打印主要工艺参数(扫描速率,成形压力及喷头距基板距离)与成形形貌(成形高度和宽度)之间对应关系。结果表明,回归模型预测值与实际值误差不大于9%,可以准确选择气动挤压式食品3D打印成形工艺参数,有利于改善食品打印成形形貌质量。 The appearance stability of the forming layer seriously affects the quality of the appearance of the sample, and it was of great significance to study the shape and shape prediction method to realize the food printing stability and rapid prototyping. A pneumatic squeeze-type food printing platform was designed and the software of Design Expert was used to design the experiment. The application of quadratic regression universal rotation design was used in the prediction of 3D printing morphology of single-layer single-pass food. The experiment was carried out and experimental data were obtained. The correspondence between the main process parameters(scan rate, pneumatic pressure and nozzle distance from the substrate)and the topography(height and width) was determined. The experimental results show that the error between the predicted value and the actual value of the regression model is not more than 9%. The experimental results showed that the application of the regression model could improve the precision of the 3D printing process parameters of pneumatic extrusion food, and improve the quality of food printing in morphology.
出处 《食品工业》 北大核心 2017年第12期172-176,共5页 The Food Industry
基金 国家重点研发计划专项(项目编号:2016YFB1100400) 陕西省战略性新兴产业重大产品(群)项目(2015KTCQ01-86) 中央高校基本科研业务费专项资金资助(xjj2016124)
关键词 3D打印 形貌预测 二次回归通用旋转设计 单层单道 3D printing morphology prediction two regression general rotation design single-layer single-pass
  • 相关文献

参考文献5

二级参考文献38

  • 1闵惜琳,刘国华.用MATLAB神经网络工具箱开发BP网络应用[J].计算机应用,2001,21(z1):163-164. 被引量:71
  • 2赵洪运,杨贤群,舒凤远,徐春华.激光熔覆层形貌预测对比分析[J].焊接学报,2009,30(1):51-54. 被引量:19
  • 3石利琴.关于3D打印技术与技能人才需求的思考[J].出版与印刷,2013(3):44-46. 被引量:3
  • 4李晓燕,张曙.三维打印快速成形及其试验研究[J].电加工与模具,2005(5):22-25. 被引量:7
  • 5戴宁,廖文和,陈春美.STL数据快速拓扑重建关键算法[J].计算机辅助设计与图形学学报,2005,17(11):2447-2452. 被引量:38
  • 6Datta S, Sundar M, Bandyopadhyay A, et al. Statistical modeling for predicting bead volume of submerged arc butt welds [ J ]. Australasian Welding Journal, 2006, 51(2): 4-8.
  • 7Yang L J, Chandel R S and Chandel R S. The effects of process variables on the weld deposit area of submerged arc welds [J ]. Welding Journal, 1993, 72(1): 11-18.
  • 8Li P, Fang M T C and Lucas J. Modeling of submerged arc welding bead using self-adaptive offset neural network [J]. Journal of Materials Processing Technology, 1997, 71(2) : 288-298.
  • 9Tang Y S, Tsai H L and Yeh S S. Modelling, optimization and classification of weld quality in tungsten inert gas welding[J].Journal of Machine Tools Manufacture, 1999, 39 (9) : 1 427-1 438.
  • 10Nagesh D S, Datta G L. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks[J]. J. Mat. Process. Technol., 2002, 123(2): 303-312.

共引文献68

同被引文献65

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部