期刊文献+

KPCA-ESN方法在Wi-Fi室内定位中的应用

Application of KPCA-ESN Method in Wi-Fi Based Indoor Positioning
下载PDF
导出
摘要 针对动态的室内环境及时变的接收信号强度(Received Signal Strength,RSS)值对定位精度的影响,提出一种基于核主成分分析(Kernel Principal Component Analysis,KPCA)和回声状态网络(Echo State Networks,ESN)相结合的Wi-Fi室内定位方法。KPCA方法对RSS指纹信息进行预处理,有效提取模型输入的非线性主元。利用ESN方法构建所提取出的定位特征与物理位置之间的非线性映射关系。将所提出的KPCA-ESN方法应用于仿真与物理环境的Wi-Fi室内定位实例中,在同等条件下,还与其他定位方法进行比较。结果表明,该方法定位精度较高,能够适应动态环境变化。 Aiming at the problem that the positioning accuracy is affected by the dynamic indoor environment and time-varying received signal strength (RSS) values, a Wi-Fi based indoor positioning method using kernel principal component Analysis (KPCA) and echo state networks (ESN) is proposed. The KPCA method is used to preprocess the RSS fingerprints effectively and extract the nonlinear principal components of the inputs of the model On the basis of KPCA, the extracted principal components are taken as the inputs to the ESN network, the nonlinear mapping between corresponding positioning features and physical locations is then established by the ESN. The proposed KPCA-ESN method is then applied to Wi-Fi based indoor positioning instances by simulation and physical environment experiments. Compared with the other positioning methods under the same condition, experimental results confirm that the proposed method has higher positioning accuracy, and can also automatically timely adapt to environmental dynamics.
作者 李军 陈颖 Li Jun;Chen Ying(College of Automation and Electrical Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, Chin)
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第12期3042-3050,共9页 Journal of System Simulation
基金 国家自然科学基金(51467008)
关键词 回声状态网络 核主成分分析 WI-FI 室内定位 接收信号强度 echo state networks kernel principal component analysis Wi-Fi indoor positioning received signal strength
  • 相关文献

参考文献5

二级参考文献80

  • 1Munoz D, Bouchereau F, and Vargas C, et al.. Position Location Techniques and Applications[M]. Burlington, USA, Academic Press, 2009: 17-21.
  • 2Gu Y Y, Lo A, and Niemegeers I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 3Mengual L, Marbn O, and Eibe S. Clustering-based location in wireless networks[J]. Expert Systems with Applications, 2010, 36(4): 7552-7561.
  • 4Brunato M and Battiti R. Statistical learning theory for location ngerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.
  • 5Bahl P and Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C]. Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000: 775-784.
  • 6Carlos K F, Inmaculada M J, and Alicia G C, et al.. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J]. IEEE Transactions on Mobile Computing, 2009, 8(9): 1250-1264.
  • 7Chen K Y, Yang Q, and Yin J, et al.. Power-efficient access-point selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(7): 877-888.
  • 8Kushki A, Plataniotis K, and Venetsanopoulos A. Intelligent dynamic radio tracking in indoor wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419.
  • 9Fang S H, Lin T N, and Lin P. Location fingerprinting in a decorrelated space[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 685-691.
  • 10Lu J W, Plataniotis K N, and Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126.

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部