期刊文献+

无线电信号协同检测和压缩传感研究 被引量:1

Compressed Cooperative Eigenvalue Spectrum Sensing for Radio Signal
下载PDF
导出
摘要 通过无线电监测发现异常无线电发射是无线电管理中的一项重要工作。提出了适用于区域性无线电监测的多节点协同检测和压缩传感模型,并基于软件无线电平台建立多节点监测系统验证了协同检测方法的有效性。结果表明,基于接收信号本征值构造测量统计量,在合适的判决门限下可以获得较高的检测率;在系统中引入压缩传感极大地减少了从传感节点到汇聚节点的数据传输量。这对发展网格化无线电监测网络,实现无线电频谱的精细化管理具有重要意义。 Detecting the abnormal radio emission through radio monitoring is an important task of radio management. A regional cooperative compressed spectrum sensing model is proposed. A multi-node sensing system based on software defined radio platform is built, and the effectiveness of cooperative spectrum sensing is demonstrated. Results show that a high detection probability could be achieved at a suitable decision threshold based on the test statistics extracted from the eigenvalue of the received signal; what's more, compressed spectrum sensing employed to the detection system greatly reduced the size of the data transmitted from the sensing nodes to the fusing node. This work will be helpful for the development of large-scale grid radio monitoring network and the finer management of radio spectrum.
作者 杨晶晶 冯云 陈志钢 唐皓 黄铭 Yang Jingjing;Feng Yun;Chen Zhigang;Tang Hao;Huang Ming(Wireless Innovation Lab, School of Information Science and Engineering, Yunnan University, Kunming 650091, China;Radio Monitoring Center of Yunnan Province, Kunming 650228, China;Key Laboratory of Spectrum Sensing and Borderland Radio Safety of University in Yurman Province, Kunming 650091, Chin)
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第12期3061-3066,共6页 Journal of System Simulation
基金 国家自然科学基金(61461052,11564044) 云南省自然科学基金(2013FA006,2015FA015) 教育部博士点基金(20135301110003,20125301120009) 中国博士后基金(2013M531989,2014T70890)
关键词 频谱监测 干扰检测 协同检测 压缩传感 模拟 radio monitoring interference detection cooperative sensing compressed spectrum sensing simulation
  • 相关文献

参考文献3

二级参考文献35

  • 1Mitola J, Maguire G. Cognitive radio: making software radios more personal. IEEE Wirel Commun, 1999, 6(4): 13-18.
  • 2Haykin S. Cognitive radio: brain empowered wireless communications. IEEE J Select Area Commun, 2005, 23(2): 201-220.
  • 3Akyildiz I F,WonYeol L. Next generation/dynamic spectrum access/cognitive radio wireless network: a survey. Comput Netw, 2006.
  • 4Cabric D, Miahra S M, Brodersen R W. Implementation issues in spectrum sensing for cognitive radio. In: The Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, California, 2004. 772-776.
  • 5Ghasemi A, Sousa E S. Collaborative spectrum sensing for opportunistic access in fading environments. In: IEEE Dynamic Sepectrum Access Network, Maryland, 2005. 131-136.
  • 6Xu F M, Zhong C. A novel cognitive wireless network architecture and agile robust spectrum sensing. In: WYVRF 22nd meeting, Stockholm, 2008.
  • 7Zhong Q, Jia J C, Shen X M. Cognitive wireless communication networks. New York: Wiley Press, 2007, Chapter 13.
  • 8Mathur C N. Cognitive Networks. Wiley Press, 2007, Chapter 11.
  • 9Hyoil K, Kang G S. Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Trans Mobil Comput, 2008, 7(5): 533-545.
  • 10Chen R C, Park J M. Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Commun Mag, 2008, 46: 50-55.

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部