摘要
研究具外部位势非自治分数阶Choquard方程:{(-?)~su+mu+V(x)u=(1+a(x))(I_α*|u|p)|u|^(p-2)u,x∈R^N u(x)→0,当|x|→∞时,基态解的存在性.利用Nehari流形技巧、集中紧性原理和山路引理得到了基态解的存在性.
We consider the following fractional Choquard equation {(-?)^su+mu+V(x)u=(1+a(x))(Iα*|u|p)|u|^(p-2)u,x∈R^N u(x)→0,as|x|→∞where V(x) is a bounded external scalar function, In is a Riesz potential, s E (0, 1), ~ E (0, N) and p E [2, c~). As a(x) satisfies the appropriate condition, and does not have any symmetry condition, we obtain the existence of ground state solutions for the equation by using Nehari mainfold technique, Concentration-compactness principle and the Mountain Pass theorem.
出处
《纯粹数学与应用数学》
2017年第6期585-599,共15页
Pure and Applied Mathematics
基金
国家自然科学基金(11771291)