期刊文献+

基于多重运动特征的轨迹相似性度量模型 被引量:15

Trajectory Similarity Measure Based on Multiple Movement Features
原文传递
导出
摘要 针对目前只能对单一运动特征(速度、方向等)进行轨迹相似性分析的不足,提出了基于多重运动特征的轨迹相似性度量,该度量对于分析和理解移动对象的运动行为和规律具有重要意义。将其应用于基于多重运动特征的运动序列模式发现。该相似性度量借鉴数据立方体的思想,将多重运动特征时间序列进行量化和符号化表示,在多重运动特征值域空间中计算两字符间的距离作为字符间替换代价,最终以加权编辑距离作为相似性度量。将该相似性度量与谱聚类方法相结合进行运动序列模式发现。实验以飓风数据为例,通过气象文献中飓风的发生与运动规律验证了模型的有效性。 For the shortcoming that existing methods can only measure the trajectory similarity of single movement feature(e.g.velocity,acceleration),the trajectory similarity measure based on multiple movement features is proposed.The measure is significant for analyzing and understanding the movement behaviors and mechanisms of moving objects.The measure borrows the idea of data cube,quantizes and symbolizes the multiple movement feature time series.In multiple movement feature domain space,the Euclidean distances between characters are computed as the substitution costs of weighted edit distance which is computed as the similarity measure.The measure is integrated with the spectral clustering method for movement sequential pattern discovery.Using the hurricane dataset,the known hurricane originating and movement laws in meteorological literatures verify the effectiveness of the measure.
作者 朱进 胡斌 邵华 ZHU Jin;HU Bin;SHAO Hua(School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suahou 215009,China;Key Laboratory for Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;Department of Geomatics Engineering, Nanjing University of Technology, Nanjing 210009, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第12期1703-1710,共8页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41571389 41501431) 苏州科技大学师资培养科研资助项目(331511203) 苏州科技大学科研基金青年项目(341731204)~~
关键词 运动特征 轨迹相似性 加权编辑距离 谱聚类 运动序列模式 movement features trajectory similarity measure weighted edit distance spectral clustering movement sequential pattern
  • 相关文献

参考文献1

二级参考文献28

  • 1Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323.
  • 2Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305.
  • 3Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000.
  • 4Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999.
  • 5Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905.
  • 6Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113.
  • 7Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085.
  • 8Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525.
  • 9Ding C, He X, Zha H, et al. Spectral Min Max cut for Graph Partitioning and Data Clustering[C]//Proc. of the IEEE Intl Conf. on Data Mining. 2001 : 107-114.
  • 10Meila M , Xu L. Multiway cuts and spectral clustering. U. Washington Tech Report. 2003.

共引文献187

同被引文献136

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部