摘要
研究了具有强阻尼的半线性波动方程的初边值问题.在一定的初值条件下,给出高初始能量状态下解在有限时间爆破的充分条件.另外在任意正初始能量状态下给出解在能量空间中整体存在的充分条件.
This paper investigates the initial-boundary value problem of the semilinear wave equation with strong damped terms. We provide the sufficient conditions of finite time blow-up of solutions with high initial energy under some reasonable restrictions on the initial data. In the case of the arbitrary positive initial energy, we also present the sufficient conditions of the existence of global solutions in the energy space.
作者
苏晓
王书彬
Su Xiao;Wang Shubin(College of Science, Henan University of Technology, Zhengzhou 450001;School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2017年第6期1085-1093,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11171311)~~
关键词
阻尼波动方程
高初始能量
爆破
整体解
Damped wave equations
High initial energy
Blow-up
Global existence.