期刊文献+

任意正初始能量状态下半线性波动方程解的有限时间爆破 被引量:1

Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy
下载PDF
导出
摘要 研究了具有强阻尼的半线性波动方程的初边值问题.在一定的初值条件下,给出高初始能量状态下解在有限时间爆破的充分条件.另外在任意正初始能量状态下给出解在能量空间中整体存在的充分条件. This paper investigates the initial-boundary value problem of the semilinear wave equation with strong damped terms. We provide the sufficient conditions of finite time blow-up of solutions with high initial energy under some reasonable restrictions on the initial data. In the case of the arbitrary positive initial energy, we also present the sufficient conditions of the existence of global solutions in the energy space.
作者 苏晓 王书彬 Su Xiao;Wang Shubin(College of Science, Henan University of Technology, Zhengzhou 450001;School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第6期1085-1093,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11171311)~~
关键词 阻尼波动方程 高初始能量 爆破 整体解 Damped wave equations High initial energy Blow-up Global existence.
  • 相关文献

参考文献2

二级参考文献19

  • 1LIN YingZhen,CUI MingGen.A new method to solve the damped nonlinear Klein-Gordon equation[J].Science China Mathematics,2008,51(2):304-313. 被引量:3
  • 2Christov C I, Marinov T T, Marinova R S. Identification of solitary - wave solutions as an inverse problem: Application to shapes with oscillatory tails. Math Comp Simulation, 2009, 80:56-65.
  • 3Mishkis A D, Belotserkovskiy P M. On resonance of an infinite beam on uniform elastic foundation. ZAMM- Z Angew Math Mech, 1999, 79:645- 647.
  • 4Porubov A. Amplification of Nonlinear Strain Waves in Solids. World Scientific, 2003.
  • 5Samsonov A M. Strain Solitons in Solids and How to Construct Them. Chapman and Hall/CRC, 2001.
  • 6Maugin C A. Nonlinear Waves in Elastic Crystals. Oxford University Press, 1999.
  • 7Falk F, Laedke E W, Spatschek K H. Stability of solitary-wave pulses in shape-memory alloys. Phys Rev B, 1987, 36(6): 3031- 3041.
  • 8Tao T, Visan M, Zhang X. The nonlinear SchrSdinger equation with combined power-type nonlinearities. Comm Partial Differential Equations, 2007, 32:1281-1343.
  • 9Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273- 303.
  • 10Kutev N, Kolkovska N, Dimova M. Global behavior of the solutions to Boussinesq type equation with linear restoring force. AIP CP, 2014, 1629:172-185.

共引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部