期刊文献+

基于二叉树结构的差分隐私直方图发布算法

Differential Private Histogram Publication Algorithm Based on Binary Tree
原文传递
导出
摘要 针对StructureFirst模型在直方图重构中不能自适应选择重构的桶个数、划分较复杂且不能发布动态数据的问题,首先采用二叉树结构将直方图加以重构,而后通过向其统计值添加噪声来满足差分隐私,最后通过滑动窗口实现动态发布。实验证明,所提算法在保护用户隐私信息的同时具有更高的划分准确度和划分效率。 The StructureFirst model in histogram reconstruction has existed the problems such as lack of the ability to choose the bucket number and to release dynamic data and the situation of higher complexity. Firstly, the histogram is reconsturcted based on the binary tree. Then, noise is added to the data after the reconstruction to meet the differential privacy. Finally,the histogram is released for each timestamp by sliding window. Experimental results show that the proposed algorithm has higher classification accuracy and partition efficiency while the user's privacy information can be protected.
作者 张剑 周全 ZHANG Jian;ZHOU Quan(Postgraduate Brigade, Engineering University of PAP, Xi' an 710086, China)
出处 《武警工程大学学报》 2017年第6期56-59,共4页 Journal of Engineering University of the Chinese People's Armed Police Force
基金 武警工程大学基础研究基金项目“动态集值型数据发布隐私保护关键技术研究”(WJY201603)
关键词 数据发布 隐私保护 直方图重构 滑动窗口 data release privacy preserving histogram reconstruction sliding window
  • 相关文献

参考文献4

二级参考文献156

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570.
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588.
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115.
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35.
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011.
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219.
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010.
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724.
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010.
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722.

共引文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部