期刊文献+

高峰期电能传输中断的Petri网控制方案

Research on Petri Net Control Scheme for Power Transmission Interruption during the Peak Periods
下载PDF
导出
摘要 传统的电能传输系统作为智能电网的基础核心主体,其运行的稳定性将直接影响智能电网的整体性能。特别是高峰供电阶段,电能传输系统必须具备较强的故障自愈能力。文章针对传统电能传输系统的基本结构及其监督控制系统,给出其Petri网形式化定义;通过对模型的分析,提出一套故障检测及定位方案;针对高峰用电期,提出一套优化的故障恢复方案,在保证系统具有较强自愈能力的同时,尽可能提高应急线路的利用率和系统故障的可恢复率。最后,通过一个实例对提出的方案进行说明并分析。 As an infrastructure, a traditional power transmission system ( TPTS) is the main body in a smart grid. Its stability af-fects the overall performance of smart grids. Especially,fault self - healing capability of TPTS is necessary and important for smart grids during the peak power transmission periods. TUs paper proposes the definitions of TPTmodel was analyzed and the schemes to detect fault and locate fault were presented. Moreover, a during the peak power transmission periods to improve the utilization rates of power emergency lines and system fault restoration rates.Finally, an example was given to illustrate the schemes.
作者 蒋忠远
出处 《西华大学学报(自然科学版)》 CAS 2017年第6期1-5,12,共6页 Journal of Xihua University:Natural Science Edition
基金 教育部春晖计划项目(Z2016151) 四川省教育厅项目(16ZA0158) 西华大学省部级学科平台开放课题(szjj2016-045)
关键词 智能电网 PETRI网 监督控制 故障诊断 系统故障 smart grid Petri n e t supervisory control fault diagnosis system fault
  • 相关文献

参考文献1

二级参考文献22

  • 1Logenthiran T, Srinivasan D, Khambadkone A M.Multi-agent system for energy resource scheduling ofintegrated microgrids in a distributed system [J]. Electric Power Systems Research, 2011, 8 1 (1 ) : 138-148.
  • 2Wang Jianhui, Zhou Zhi, Botterud A. An evolutionarygame approach to analyzing bidding strategies inelectricity markets with elastic demand [J]. Energy,2011, 3 6 (5 ) : 3459-3467.
  • 3Langary D, Sadati N, Ranjbar A M. Direct approach incomputing robust Nash strategies for generating companiesin electricity markets [J]. Electrical Power and EnergySystems, 2014, 5 4 (5 4 ) : 442453.
  • 4Kazemi M, Ivatloo B M, Ehsan M. Risk-based biddingof large electric utilities using information gap decisiontheory considering demand response [J]. Electric PowerSystems Research, 2014, 1 1 4 (3 ) : 86-92.
  • 5Nojavan S, Zare K, Ashpazi M A. A hybrid approachbased on IGDT-MPSO method for optimal bidding strategyof price-taker generation station in day-ahead electricitymarket [J]. Electrical Power and Energy Systems,2015, 6 9 : 335-343.
  • 6Zakariazadeh A , Jadid S. Smart microgrid energy andreserve scheduling with demand response using stochasticoptimization[J]. Electrical Power and Energy Systems,2014, 6 3 (1 2 ) : 523-533.
  • 7Mazidi M, Zakariazadeh A , Jadid S, et al. Integratedscheduling of renewable generation and demand responseprograms in a microgrid [J]. Energy Conversion andManagement, 2014, 8 6 (1 0 ) : 1118-1127.
  • 8Handschin E, Slomski H. Unit commitment in thermalpower systems with long-term energy constraints [J]. IEEETransactions on Power Systems, 1990, 5 (4 ) : 1470-1477.
  • 9Green R G, Wang Lingfeng, Alam M. Training neuralnetworks using central force optimization and particleswarm optimization : insights and comparisons [J]. ExpertSystems with Applications, 2012, 3 9 (1 ) : 555-563.
  • 10Kouhi S, Keynia F, Ravadanegh S N. A new shorttermload forecast method based on neuro-evolutionaryalgorithm and chaotic feature selection [J]. ElectricalPower and Energy Systems, 2014, 6 2 (1 1 ) : 862-867.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部