期刊文献+

基于颜色和边缘特征自适应融合的人脸跟踪算法 被引量:8

Face tracking algorithm of color and edge features based adaptive fusion
下载PDF
导出
摘要 针对传统的基于颜色直方图跟踪算法不能精确跟踪的缺陷,提出了一种基于粒子滤波的自适应融合多特征的人脸跟踪算法.该方法首先在视频序列中提取人脸的肤色和边缘特征,并以加权颜色直方图和边缘直方图描述人脸特征;然后采用自适应融合方法计算粒子集权重.这种自适应融合方法,有效地增强了人脸跟踪的可靠性.实验结果表明,在视频人脸存在类肤色以及光照变化等复杂背景下,该方法改善了跟踪效果并且具有较强的鲁棒性. In view of the imprecision of traditional tracking algorithms based on color histogram,a face tracking algorithm combining face multiple features based on adaptive fusion in the basic frame of particle filtering was presented.First,the color and edge features of the human face were extracted in the video sequence,while the weighted color histogram and edge orientation histogram(EOH)described facial features.Then,a self-adaptive features fusion strategy was employed to calculate particle set weight.The reliability of face tracking was enhanced by the self-adaptive features fusion strategy.Experimental results show that in the cases of complex backgrounds such as similar skin color,illumination change and so on,the proposed approach improves the tracking effect and has strong robustness.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第10期837-842,共6页 JUSTC
基金 山东省科技发展计划项目(2014gsf116004)资助
关键词 人脸跟踪 粒子滤波 加权颜色直方图 边缘方向直方图 自适应融合方法 face tracking particle filtering weighted color histogram edge orientation histogram self-adaptive features fusion
  • 相关文献

参考文献2

二级参考文献19

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2003, 25(5): 564 -577.
  • 2Nummiaroa K, Koller-Meierb E, Gool L V. An adaptive color-based particle filter [ J ]. Image and Vision Computing, 2003, 21 ( 1 ) :99 - 110.
  • 3M Isard, Blake A. Condensation-condltional density propagation for visual tracking [ J ]. International Journal of Computer Visiol,, 1998, 29(1): 5-28.
  • 4Perez P, Hue C, Vermaak J,et al. Color-based probabilistic tracking [ A]. In: proceedings of the 7th European Conference on Computer Vision [ C ] , Berlin, Germany, 2002 : 661 - 675.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection [ A]. In : Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[ C ] , San Diego, CA, USA, 2005, 1 : 886 - 893.
  • 6Birchfield S. Rangarajan S. Spatiograms versus histograms for regionbased tracking [ A ]. In: Proceedings of iEEE Computer Society Conference on Computer Vision and Patterm Recognition, San Diego, CA,USA, 2005, 2:1152 - 1157.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [J]. IEEE Computer Vision and Pattern Recognition, 2000, 4(2) : 142-149.
  • 8高建坡,王煜坚,杨浩,吴镇扬.以颜色和形状直方图为线索的粒子滤波人脸跟踪[J].中国图象图形学报,2007,12(3):466-473. 被引量:11
  • 9Cheng Yizong. Mean Shift,Mode Seeking,and Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(08):790-799.
  • 10Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface[J].Intel Technology Journal,1998,(02):1-15.

共引文献20

同被引文献77

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部