期刊文献+

纳米流体在散热器管中的传热模拟 被引量:3

Heat transfer simulation of nanofluids in car radiator tube
下载PDF
导出
摘要 为研究纳米流体在汽车散热器中的传热能力,利用Pro/E和Hyper Mesh建立散热器扁平管的三维网格模型,再将其导入Fluent中,建立纳米流体在散热器管中的传热模型,以γ-Al_2O_3-EG纳米冷却液为研究对象,仿真模拟γ-Al_2O_3-EG在散热器管道中的传热状况,得到管道的温度分布,并结合数值计算获得纳米流体的性能参数及其变化趋势,研究纳米粒子对基液冷却性能的影响规律。结果表明:γ-Al_2O_3-EG纳米流体的最大雷诺数为1 237,在管道中层流流动;随着纳米粒子体积分数φ的增加,热流量Q先增大后减小,最大值为639.36 W;初始温度显著影响着纳米流体的传热系数h,当φ=1 vol%时,h40=h60×39.44%;体积流量fv由5 L/min增大至10 L/min时,努塞尔数Nu有最大增幅30.54%。 In order to study the heat transfer capability of metal oxide nano fluids in car radiators,the 3 D grid model of radiator flat tube was constructed by using Pro/E and Hyper Mesh. The mesh data were imported into Fluent and the heat transfer model of nanofluids in radiator tube was built.The heat transfer of γ-Al2O3-EG nano coolant in radiator tube was simulated and the temperature distribution of the tube was obtained. The performance parameters and the changing trend of nano fluids were obtained by numerical calculation,and the influence of nano particles on the cooling performance of base liquid was verified. The results show that the maximum Reynolds number ofγ-Al2O3-EG nano fluid is 1 237,which is the laminar flow in tube. With the increase of the volume concentration φ,the heat flow rate Q increases firstly and then decreases,and the highest value is639. 36 W. The inlet temperature significantly affects the heat transfer coefficient( h) of nano fluids.When the φ = 1 vol%,h40/h60= 39. 44% and the flow rate fvincreases from 5 L/min to 10 L/min,the maximum increment of Nusselt number is 30. 54%.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第6期1985-1992,共8页 Journal of Guangxi University(Natural Science Edition)
基金 广西自然科学基金资助项目(2014GXNSFGA118005) 广西制造系统与先进制造技术重点实验室项目(15-140-30S006) 广西研究生教育创新计划资助项目(JGY2017011)
关键词 纳米流体 Γ-AL2O3 仿真 传热 努塞尔数 nanofluid γ-Al2O3 simulation heat transfer Nusselt number
  • 相关文献

参考文献3

二级参考文献16

  • 1王建立,朱建军,宋辰兴,张兴.3ω法测量纳米流体热导率[J].化工学报,2011,62(S1):42-47. 被引量:4
  • 2谭秉仁,张金兴.汽油发动机的高温冷却[J].上海交通大学学报,1993,27(3):17-24. 被引量:3
  • 3蔡锐彬,卢振雄,罗晓波.小型柴油机高温冷却效果的研究[J].华南理工大学学报(自然科学版),1995,23(5):142-148. 被引量:2
  • 4李强,宣益民,姜军,徐济万.航天用纳米流体流动与传热特性的实验研究[J].宇航学报,2005,26(4):391-394. 被引量:17
  • 5周龙保.内燃机学[M].北京:机械工业出版社,2000..
  • 6Maiga S. Heat Transfer Behaviours of Nanofluids in a Uniforrnly Heated Tube[ J]. Superlattiees and Mierostruetures, 2004, 35:543-557.
  • 7Lee J, Mudawar I. Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels[ J]. Heat and Mass Transfer, 2007, 50: 452-463.
  • 8Jang S P, Choi S U S. Cooling Performance of a Microchannel Heat Sink with Nanofluids [J]. Applied Thermal Engineering, 2006,26 ( 17 ) : 2457-2463.
  • 9Yu W, Choi S U S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: a Renovated Maxwell Model [ J ]. Nanoparticle Research, 2003,5 ( 1 ) : 167-171.
  • 10Murshed S M S, Leong K C, Yang C. Thermal Conductivity of N anoparticle Suspensions[C]. IEEE Conference,2006.

共引文献37

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部