期刊文献+

应用Raystation治疗计划系统脚本实现Hausdorff距离的计算 被引量:3

Calculating the Hausdorff distance based on the scripting in RayStation treatment planning system
原文传递
导出
摘要 目的应用RayStation治疗计划系统脚本实现Hausdorff距离的计算,并用于CT和MR图像自动配准中脑干形变误差的衡量。方法在RayStation 4.7治疗计划系统中,应用IronPython语言编写脚本,先读取2个感兴趣区域的轮廓点集,然后计算它们之间的Hausdorff距离。结合XAML语言设计图形用户界面,实现Hausdorff距离的可视化输出。运行脚本后,在RayStation中弹出图形用户界面,从中选择需要计算距离的2个感兴趣区,然后单击"计算"按钮可获得相应的距离以及算法的执行时间。结果从20例头颈部肿瘤患者的图像资料中,计算得到脑干的平均Hausdorff距离为1.20 cm,平均程序执行时间为11.01 s。结论应用RayStation治疗计划系统脚本可实现2个感兴趣区的Hausdorff距离计算,可满足临床及科研工作中需要计算Hausdorff距离的需求。 Objective To calculate out the Hausdorff distance based on the scripting in RayStation treatment planning system, which was then applied in measuring the deformation error of brain stem during image automatic registration between CT and MR.Methods Scripting was edited in RayStation system (version 4.7) by using IronPython. The set of point coordinates on the contour of any two region of interest (ROI) had been found firstly, then the Hausdorff distance between the two point sets was calculated out. A graphical user interface (GUI) was designed by using XAML to acquire the visualized output of Hausdorff distance. GUI appeared when the script was run, where two ROIs was selected, then the corresponding Hausdorff distance and the running time were displayed by pressing the "Calculate" button. Results The mean Hausdorff distance of brain stem in 20 patients with head and neck neoplasms was 1.20 cm while the mean elapsed time was 11.01s.Conclusions Hausdorff distance of any two ROIs can be calculated out by using the developed method. GUI is designed to realize the visual interaction with RayStation system. Therefore, the RayStation system satisfies the demands of Hausdorff distance calculation in both clinical and research work.
出处 《中华肿瘤杂志》 CAS CSCD 北大核心 2017年第12期942-945,共4页 Chinese Journal of Oncology
关键词 HAUSDORFF距离 RayStation治疗计划系统 脚本 脑干 肿瘤 IronPython Hausdorff distance calculation RayStation treatment planning system Script Brain stem Neoplasm lronPython
  • 相关文献

参考文献4

二级参考文献27

  • 1朱健,尹勇,卢洁,刘同海.多叶光栅静态调强与动态调强的比较[J].山东医药,2007,47(27):119-120. 被引量:2
  • 2Pinnacle3 Planning reference guide[M]. Fitchburg USA: Philips Medical System, 2008.
  • 3RayStation 3.0 Reference Manual[M]. Stockholm, Sweden: RaySearch Laboratories AB, 2012.
  • 4Mueller JP. Professional IronPython design and develop lronPython techniques[M]. Indiana,USA: Wiley Publishing Inc, 2010.
  • 5Foord MJ, Muirhead C. IronPython in action[M]. Greenwich, CT,USA:Manning Publications Co, 2010.
  • 6.David L.C,Theodore s.H,Helen A.S,等.使用多目标优化方法提高调强放射治疗的计划时间和计划质量,国际放射肿瘤生物物理学杂志.2612,82(1):e83-90.
  • 7Bokrantz,Rasmus.放射治疗过程中Pareto前沿的近似技术.医学物理生物杂志,2013,58(11):3501-16.
  • 8Hong TS,Craft DL,Cadsson F,等.局部胰头癌多目标优化放射治疗临床应用.国际放射肿瘤生物物理学杂志,2008,72(4):1208-14.
  • 9Niemierko A.报告和分析剂量的分布:等效均匀剂量的概念.医学物理杂志,1997,24(1):103-10.
  • 10David C,ThomasB.在调强的多目标优化过程中需要生成多少个计划?.医学物理生物杂志,2008,53:2785-96.

共引文献13

同被引文献40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部