摘要
随着分布式计算技术的发展,Hadoop成为大规模数据处理领域的典型代表,由于安全机制相对薄弱,缺少用户行为活动的监控,容易受到隐藏的安全威胁,如数据泄露等。结合主成分分析计算的特点,基于MapReduce对其做并行化处理,克服了传统主成分分析计算的缺点,提高了模型训练效率。提出了一种基于并行化主成分分析的异常行为检测方法,即比较当前用户的行为模式是否与历史行为模式相匹配作为判定用户行为异常与否的度量标准。实验表明该方法能够较好地发现用户的异常行为。
With the development of distributed computing technology, Hadoop, as a typical repre- sentative in the field of massive data processing, is vulnerable to hidden security threats, such as data breaches, due to weak security mechanism and lack of user activity monitoring. By combining with the characteristics of the principal component analysis, we perform parallel process through MapReduce to overcome the disadvantage of principal component analysis and improve the training efficiency. We pro- pose an abnormal behavior detection method in Hadoop cluster, namely we compare the current user be-havior patterns with historical behavior patterns to see if they match, which is taken as a metric for a- nomaly behavior detection. Experimental results indicate that our method can detect users' anomaly be-havior effectively.
出处
《计算机工程与科学》
CSCD
北大核心
2017年第12期2185-2191,共7页
Computer Engineering & Science
基金
国家自然科学基金联合基金项目(U1230106)
国家信息安全242项目(2013A050)