期刊文献+

基于改进量子免疫克隆多目标优化算法的火力分配问题 被引量:2

Weapon-target assignment based on improved quantum-inspired immune clonal multi-objective optimization algorithm
下载PDF
导出
摘要 针对传统火力分配中存在武器资源浪费的情况,以对敌目标与网络攻击收益最大、己方武器消耗最小为目标,建立一种考虑毁伤概率约束条件的多目标火力分配模型。对标准量子免疫克隆多目标优化算法进行优化,引入了混沌机制,修复不可行解,并对搜索策略和多样性保持策略进行改进,设计了一种改进的量子免疫克隆多目标优化算法。通过实验仿真,验证了模型的正确性与算法的优越性。相比于传统量子免疫克隆算法,改进算法的性能平均提高了23%。 Aiming at the problem of waste of weapon resources in traditional weapon target assign- ment (WTA), and to realize the maximum benefit of target and network attacks and the minimum con- sumption of weapons, we establish a multi-objective WTA model, which takes the damage probability constraint into consideration. We improve the standard quantum immune clonal multi-objective optimiza- tion algorithm (QICMOA), introduce the chaos mechanism, and repair the infeasible solutions. We also make improvement for the search strategy and diversity maintaining strategy and design an improved QICMOA. Simulation experiments verify the correctness of the model and the superiority of the algo- rithm. Compared with the traditional QICMOA, the performance of the new algorithm is improved by 23% on average.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第12期2314-2319,共6页 Computer Engineering & Science
基金 航空科学基金(20155196022)
关键词 火力分配 量子克隆免疫多目标算法 毁伤概率约束 weapon-target assignment(WTA) quantum immune clonal multi-objective optimization algorithm(QICMOA) damage probability constraint
  • 相关文献

参考文献7

二级参考文献81

共引文献158

同被引文献19

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部