期刊文献+

受电压激励的复合材料悬臂板的分叉分析 被引量:2

BIFURCATIONS OF A COMPOSITE LAMINATED CANTILEVERED PLATE UNDER VOLTAGE EXCITATION
下载PDF
导出
摘要 以飞行器机翼作为工程背景,将机翼简化为悬臂板模型,研究了受横向电压激励、基础激励、面内激励联合作用下复合材料层合悬臂板的非线性动力学问题.首先建立其动力学模型,考虑冯-卡门大变形理论,利用Hamilton原理建立复合材料层合悬臂板的非线性动力学方程;选择符合边界条件的模态函数,利用Galerkin方法对系统进行四阶离散,得到四自由度非线性常微分方程;代入系统实际物理参数,应用MATLAB软件数值模拟得到系统振动幅值随电压激励变化的分叉图,由图可知,电压激励使系统从混沌运动变为倍周期运动,降低了系统振幅,保持系统的稳定. The bifurcations of a composite laminated cantilevered plate forced by the voltage, base and in-plane excitations. The nonlinear partial are studied, which is simultaneously differential governing equations of the system motion are established by using the Hamilton's principle. The Galerkin approach is used to discretize the partial differential equations to the ordinary differential equations with four degree of freedom. Numerical simula- tions are also carried out to investigate the effects of the voltage excitation on the steady-state responses of the can- tilevered piezoelectric plate. The bifurcation diagram of the system is then obtained. The system motions can be shown as follows: the chaotic motion to the multiple periodic motion. The results show that the amplitude of the system can reduce effectively and keep the stability by adjusting the voltage excitation.
出处 《动力学与控制学报》 2017年第6期489-493,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11290152 11322214)~~
关键词 悬臂板 HAMILTON原理 分叉 非线性动力学 混沌 cantilever plate, Hamilton's principle, bifurcation, nonlinear dynamics, chaos
  • 相关文献

参考文献1

二级参考文献19

  • 1陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45. 被引量:17
  • 2董兴建,孟光.压电悬臂梁的动力学建模与主动控制[J].振动与冲击,2005,24(6):54-56. 被引量:20
  • 3李晓军,陈立群.轴向运动简支—固支梁的横向振动和稳定性[J].机械强度,2006,28(5):654-657. 被引量:20
  • 4铁摩辛柯S,杨DH,小韦孚W著.胡人礼译.工程中的振动问题.人民铁道出版社,1978
  • 5Reddy JN. Mechanics of Laminated Composite Plates and Shells. New York, CRC Press, 2004
  • 6Nayfeh AH, Lacarbonara W. Nonlinear normal modes of buckled beam: three-to-one and one-to-one internal resonances. Nonlinear Dynamics, 1999,18:253-273
  • 7Sun B, Huang D. On the feedback control gain of smart laminated beams, plates and shells. In: 6th International Conference on Composite Engineering (ICCE/6), 1999. 859-860
  • 8Huang D, Sun B. Approximate analytical solutions of smart composite mindlin beams. Journal of Sound and Vibration, 2001, 244:379-394
  • 9Halim D, Moheimani Reza SO. Spatial resonant control of flexible structures-application to a piezoelectric laminate beam. IEEE Transactions on Control Systems Technology, 2001, 9:37-53
  • 10Akl W, Poh S, Baz A. Wireless and distributed sensing of the shape of morphing structures. Sensors and Actuators, 2007, 140:94-102

共引文献8

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部