摘要
本文研究了深空环境下三星库仑编队构型重构控制问题.首先考虑外界环境干扰作用(主要以太阳光压为主)和德拜效应影响,推导出精确的三星库仑编队动力学方程.针对库仑编队动力学特性和太阳光压对于编队任务控制精度的影响,设计基于BP神经网络的PID控制方法.PID控制结构简单,稳定性好,BP神经网络具有超强的自主学习和非线性逼近干扰能力,二者有机结合,通过BP神经网络输出最优的PID控制参数组合,改变卫星所带电荷从而改变卫星之间库仑力大小,使编队渐近稳定并按期望距离和构型飞行.仿真结果表明基于BP神经网络PID控制性能明显优于传统PID控制,大大提高了编队控制精度和系统对于外界干扰的鲁棒性.
The problem of reconfignration control for a three-craft coulomb formation in the deep space is investiga- ted in this paper. First of all, considering external disturbance and Debye effect, the accurate dynamic models of three-craft coulomb formation are established. According to the characteristics of the coulomb formation dynamic model and the effect of solar radiation pressure on control precision, a PID charge feedback controller based on BP neural network is designed. PID control has simple structure and good stability, while BP neural network has abili- ties of autonomic learning and nonlinear approximation. Connecting PID control with BP neural network, the opti- mal PID control parameters are outputted to change the charge of satellites in order to change coulomb forces be- tween satellites, which eventually make the formation converge to equilibrium. The simulations show that the con- troller is accurate and simple which is better than traditional PID control, and exhibits good control robustness.
出处
《动力学与控制学报》
2017年第6期532-536,共5页
Journal of Dynamics and Control
基金
国家自然科学基金(11372353)~~
关键词
深空环境
三星编队
库仑力
PID
BP神经网络
deep space, three-craft formation, coulomb force, PID control, BP neural network