期刊文献+

面向电力领域的微博评论情感分析 被引量:1

Emotional Analysis of Microblogging Comments in the Electric Power Industry
下载PDF
导出
摘要 目前对微博评论的研究主要聚焦在影视、购物等非电力领域,而对电力领域的研究相对较少.因此在影视等领域的研究基础上,根据电力行业的特性,将评论进行预处理后,建立评论关系树,使用动态扩展情感词典和基于支持向量机的方法,建立情感极性判别规则,进行情感极性分析.经实验验证,生成评论关系树后,扩展情感词典和支持向量机两种方法在电力领域的正确率均得到了明显的提升. Presently,the research on microblogging is mainly focused on non-power fields such as film and television,and research on power industry is relatively limited. Therefore,based on the research of the field of film and television,according to the characteristics of the power industry,after the pretreatment of the comment,the relationship tree is set up,and by using the dynamically extended emotional dictionary and based on support vector machine method,the emotional polarity discrimination rules are established to carry out emotional polarity analysis. After experimentally verifying and generating the relationship between the tree,the extended emotional dictionary and the support vector machine improve the correctness rate of the two methods in the power field.
作者 宋硕 雷景生
出处 《上海电力学院学报》 CAS 2017年第6期601-606,612,共7页 Journal of Shanghai University of Electric Power
关键词 情感分析 微博评论 评论关系 扩展情感词典 支持向量机 emotional analysis microblog comment comment structure extended emotional dictionary support vector machine
  • 相关文献

参考文献4

二级参考文献22

  • 1姚小朋,张捷.基于DDS的多波形信号发生器设计[J].现代仪器,2007,13(2):41-43. 被引量:7
  • 2CORDESSES L. Direct digital synthesis: a tool for periodic wave generation: Part 2 [J]. IEEE Signal Processing Magazine, 2004, 21(5): 110-112.
  • 3AD9850 pdf及AD9850的应用内容介绍[EB/OL].http://www.fpga-arm.com/technic_article.
  • 4Ekman P. Facial expression and emotion. American Psychologist, 1993, 48(4): 384-392.
  • 5Yang Y, Pedersen J O. A comparative study on feature selection in text categorization. ICML, 1997, 97: 412-420.
  • 6Zagibalov T, Carroll J. Automatic seed word selection for unsupervised sentiment classification of Chinese text // Proceedings of the 22nd International Con- ference on Computational Linguistics-Volume 1. Manchester, 2008:1073-1080.
  • 7Barbosa L, Feng J. Robust sentiment detection on twitter from biased and noisy data // Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010). Beijing, 2010:36-44.
  • 8Li Binyang, Zhou Lanjun, Feng Shi, et al. A unified graph model for sentence-based opinion retrieval // Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, 2010:1367-1375.
  • 9李琳;张尔扬.直接数字频率合成技术及应用[M],1999.
  • 10关晓佳.基于DDS技术信号发生器的设计[M],2012.

共引文献55

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部