期刊文献+

基于卷积神经网络检测的单镜头多目标跟踪算法 被引量:2

Single-lens Multi-target Tracking Algorithm Based on Convolution Neural Network
下载PDF
导出
摘要 目前卷积神经网络在图像识别分类领域已经取得了长足的进步,随着网络模型的优化改进,目标识别的准确度和帧速率都在提升,因此利用相对成熟的卷积神经网络模型进行多目标跟踪任务变得可行。论文即是利用卷积神经网络模型Fast R-CNN设计出多目标跟踪的算法,以Fast R-CNN作为模型检测的主框架,将训练样本分为目标和背景两个类并以此完成检测模型的线下训练,以对每个视频帧检测的方式完成整个视频的跟踪任务。实验结果表明,这种算法在实时性、准确性和鲁棒性上均有不错的表现。 At present,convolution neural network has made great progress in the field of image recognition and classification.With the optimization of the network model,the accuracy and frame rate of target recognition are improved. So the use of relativelymature convolution neural network model for multi-target tracking task becomes feasible. In this paper,the convolution neural net-work model Fast R-CNN is used to design a multi-target tracking algorithm. Taking the Fast R-CNN as the main frame of the modeldetection,the training samples are divided into two categories:target and background,therefore complete the offline training of thetest model,and complete the tracking task for the entire video in a manner that detects each video frame. The experimental resultsshow that this algorithm has good performance in terms of real-time,accuracy and robustness.
出处 《舰船电子工程》 2017年第12期25-28,38,共5页 Ship Electronic Engineering
关键词 多目标跟踪 卷积神经网络 目标检测 multi-target tracking convolution neural network target detection
  • 相关文献

参考文献3

二级参考文献74

  • 1Tang Yi, Liu Weiming, Xiong Liarlg. Improving Robustness and Accuracy in Moving Object Detection Using Sectiondistribution Background Model[C]//Proc. of ICNC'08. [S. l. ] : IEEE Press, 2008.
  • 2Li Liyuan, Huang Weiming, Irene Y H, et al. Principal Color Representation for Tracking Persons[C]//Proc. of IEEE International Conference on Systems, Man and Cybernetics. Washington D. C. , USA.. IEEE Press, 2003.. 1007-1012.
  • 3LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 5LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 6HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 8GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 9LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 10SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.

共引文献573

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部