期刊文献+

锥b-度量空间中向量平衡问题解的存在性

Existence of solutions for vector equilibrium problems in cone b-metric spaces
下载PDF
导出
摘要 研究了锥b-度量空间中向量平衡问题解的存在性问题.利用向量空间中的序方法证明了向量形式的Ekeland变分原理,并给出了锥b-度量空间上向量平衡问题解的存在性定理.结果表明,如果向量值函数上半连续且满足向量形式的Ekeland变分原理的条件,那么向量平衡问题的解集非空。 This paper studies the existence of solutions for vector equilibrium problems in cone b-metric spaces.By using the vector ordering method,we prove a vector form of Ekeland's variational principle and give the existence theorem of vector equilibrium problems in cone b-metric spaces.Our results show that,if the vector-valued function is upper semi-continuous and satisfies assumptions of the vector form Ekeland's variational principle,then the set of solutions for the vector equilibrium problem is nonempty.
出处 《湖北师范大学学报(自然科学版)》 2017年第1期56-60,共5页 Journal of Hubei Normal University:Natural Science
基金 国家自然科学基金(10871052) 非线性分析中的一些问题
关键词 锥b-度量空间 EKELAND变分原理 向量平衡问题 coneb - metric space Ekeland's variational principle vector equilibrium problem
  • 相关文献

参考文献2

二级参考文献20

  • 1曾六川.广义集值强非线性混合似变分不等式解的存在性与算法(英文)[J].工程数学学报,2006,23(2):324-332. 被引量:2
  • 2RUDIN W.数学分析原理[M].北京:机械工业出版社,2004,1.
  • 3Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J]. Math Student, 1994, 63:123-145.
  • 4Ansari Q H, Yao J C. An existence result for the generalized vector equilibrium problem[J]. Applied Mathematics Letters, 1999, 12:53-56.
  • 5Ansari Q H, Schaible S, Yao J C. System of vector equilibrium problems and its applications[J]. 3ournal Optimization Theory and Application, 2000, 107:547-557.
  • 6Bianchi M, Kassay G, Pini R. Ekeland's principle for vector equilibrium problems[J]. Nonlinear Analysis, 2007, 66:1454-1464.
  • 7Ansari Q H. Vectorial form of ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory[J]. Journal of Mathematical Analysis and Applications, 2007, 334:561-575.
  • 8Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67:297-320.
  • 9Chen G Y, Yang X Q, Yu H. A nonlinear scalarization function and generalized quasi-vector equilibrium problems[J]. Journal of Global Optimization, 2005, 32:451-466.
  • 10Bianchi M, Pini R. Coercivity conditions for equilibrium problems[J]. Journal of Optimization Theory and Applications, 2005, 124:79-92.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部