期刊文献+

基于分布估计算法的多目标优化 被引量:1

Multi-objective Optimization Problem Solved by Estimation of Distribution Algorithm
下载PDF
导出
摘要 论述解决多目标优化问题的若干解法,为了提高多目标优化算法的收敛性和求解精度,提出了一种分布估计的多目标优化算法。给出了3个典型的测试函数的pateto解集。通过4个测试函数测试,并与非劣排序多目标遗传算法(NSGA-Ⅱ)和规则模型分布估计算法(RM-MEDA)两个算法进行了比较。测试结果表明,该算法具有良好的收敛性和分布性,并且效果稳定。 Some methods for solving multi-objective optimization problems are discussed. In order to improve the convergence and accuracy of multi-objective optimization algorithm, a multi-objective optimization algorithm based on distribution estimation is proposed. 3 typical test functions of pateto-optimal sets were given. Through the 4 test functions, compared with the Nondominated Sorting Genetic Algorithm (NSGA-II) and Regularity Model-based Mul-tiobjective estimation of distribution algorithm (RM-MEDA), the test results show that the algorithm has good convergence and distribution, and the effect is stable.
作者 高尚 刘勇
出处 《软件》 2017年第12期25-28,共4页 Software
基金 人工智能四川省重点实验室开放基金(2016RYJ03)
关键词 多目标优化 分布估计算法 收敛性 Multi-objective optimization Estimation of distribution algorithm Convergence
  • 相关文献

参考文献3

二级参考文献128

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123
  • 3Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136
  • 4Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006
  • 5Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93
  • 6Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450
  • 7Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143
  • 8Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258
  • 9Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27
  • 10Roberto S. Estimation of distribution algorithms with Kikuchi approximations. Evolutionary Computation, 2005,13(1): 67-97

共引文献221

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部