期刊文献+

基于分数阶滤波器的高泛化性神经网络建模 被引量:2

High Generalization Neural Network Modeling Based on Fractional Order Filter
下载PDF
导出
摘要 为了显著提高神经网络建模的泛化性,提出了激活函数是分数阶滤波器的神经网络。分数阶滤波器涵盖了Butterworth和Chebyshev滤波器的性能。滤波器集对样本信号进行频率分解,既提升了信息的致密性,也保证了遍历性,更有助于提高神经网络的泛化性。各滤波器参数由盲动粒子群优化算法寻优。神经网络解算时,既采用了线性回归求解神经网络输出层权重,又在有限频段上用线性传递函数模拟替代分数阶传递函数,这两种措施缩短了解算时间。仿真结果表明,线性系统的泛化性精度可达亿分之几,非线性系统可达万分之几,可以离线应用。 In order to improve the generalization of neural network modeling significantly, a neural network that activation function is fractional order filter is proposed. The fractional order filter coveres the properties of Butterworth and Chebyshev filters. Because the signal frequency of the sample is decomposed by the filter set, the information compactness is enhanced and the ergodicity is ensured, which helps to improve the generalization of neural network. The parameters of each filter are optimized by particle swarm optimization with blindfold feature. In order to save the computation time of the network, the linear regression algorithm is used to solve the output layer weight of the neural network, and the linear transfer function is used to replace the fractional order transfer function in the finite frequency band. The simulation results show that the generalization accuracy of the linear system is up to parts per hundred million, and the nonlinear system can be up to parts per ten thousands, so it can be used offline
出处 《测控技术》 CSCD 2017年第12期57-62,共6页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61272534)
关键词 神经网络 建模 泛化性 分数阶滤波器 盲动粒子群 neural network modeling generalization fractional order filter blindfold particle swarm
  • 相关文献

参考文献4

二级参考文献42

  • 1陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 2李素芬,吴祯祥,葛玉林.电站锅炉NO_x排放与效率的混合建模及优化[J].热科学与技术,2007,6(1):26-31. 被引量:7
  • 3Hypo-sung A, Varsga B, Yangquan C. Fractional-order Integral and Derivative Controller for Temperature Profile Tracking [J]. Sadahana, Academy Proc. in Eng., India, 2009, 34(5): 833-850.
  • 4Ramiro S, Barbosa J A, Tenreiro M, Manuel F S. Time Domain Design of Fractional Differ-integrators Using Least- Squares [J]. Signal Processing, 2006, 86: 2567-2581.
  • 5Ozaktas H M, Arikan O, Kutay M A, Bozdagi G. Digital Computation of the Fractional Fourier Transform [J]. IEEE Trans. Signal Processing, 1996, 44(9): 2141-2150.
  • 6Ostalczyk P. Fundamental Properties of the Fractional-order Discrete-time Integrator [J]. Signori Processing, 2003, 83: 2367-2376.
  • 7Yangquan C, Bias M V. A new IIR-type Digital Fractional Order Differentiator [J]. Signal Processing, 2003, 83(11): 2359-2365.
  • 8Petras S G, L Dorcak. Digital Fractional Order Controllers Realized by PIC Microprocessor: Experimental Results [A] Proc. of the ICCC'2003 conference [C]. High Tatras, Slovak Republic,.2003-05. 873-876.
  • 9Fan Weidong, Lin Zhenchun, Kuang Jinguo. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion[J]. Fuel Processing Technology, 2010, 91(6): 625-634.
  • 10Die LI, Cortes C, Pallares J. Numerical investigation of NOx emissions from a tagentially-fired utility boiler under conventional and overfire air operation[J]. Fuel, 2008, 87(7): 1259-1269.

共引文献19

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部