期刊文献+

中层特征块分类的运动视频运动员检测模型 被引量:1

Model of Sports Video Athlete Detection for Classification of Intermediate Feature Blocks
下载PDF
导出
摘要 针对单一的特征提取算法在运动员检测中还存在漏检较多的问题,本文提出了一种中层特征块分类的运动视频运动员检测模型。首先采用中层特征块作为描述运动员的特征,然后采用SLIC算法进行超像素分割,利用像素的CIELAB颜色空间和XY空间坐标构建像素的5维特征,最后采用高斯分量的全协方差混合高斯模型建立前景背景像素描述模型,提高检测精度。仿真实验结果表明,本文提出的改进模型,相比较HOG算法和SVM算法,检测结果更准确的表示了运动员区域。 Aiming at the problem that the single feature extraction algorithm has more problems in the detection of the athletes, this paper proposes a sports video player detection model with middle feature block classification. Firstly, the mid-level feature block is used to describe the characteristics of the athlete. Then, the SLIC algorithm is used to divide the pixel, and the 5-D feature of the pixel is constructed by using the CIELAB color space and the XY spatial coordinates. Finally, the Gaussian component is used to establish the foreground Background pixel description model to improve the detection accuracy. The simulation results show that the improved model proposed in this paper compares the HOG algorithm and SVM algorithm, and the detection result shows the athlete area more accurately.
作者 王丹
出处 《科技通报》 北大核心 2017年第12期137-140,共4页 Bulletin of Science and Technology
基金 江西省教改课题(课题编号:JXJG-14-49-8)
关键词 特征提取 运动视频 中层特征块分类 运动员检测 超像素分割 全协方差描述 feature extraction motion video middle feature block classification athlete detection super pixel segmentation total covariance description
  • 相关文献

参考文献2

二级参考文献18

  • 1袁晓彤,郭礼华,杨树堂.利用区域变形和背景更新实现运动对象跟踪[J].计算机辅助设计与图形学学报,2005,17(5):921-927. 被引量:5
  • 2向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 3Hou Z Q,Han C Z.A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system[C] //Proceedings of the 7th International Conference on Information Fusion,Stockholm,2004:754-759
  • 4Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,1999:246-252
  • 5Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[C] // Proceedings of the 6th European Conference on Computer Vision,Dublin,2000:751-767
  • 6Cheung S C S,Kamath C.Robust techniques for background subtraction in urban traffic video[C] //Proceedings of SPIE,San Jose,2004,5308:881-892
  • 7Fuentes L,Velastin S.From tracking to advanced surveillance[C]//Proceedings of IEEE International Conference on Image Processing,Barcelona,2003:121-124
  • 8Herrero E,Orrite C,Senar J.Detected motion classification with a double-background and a neighborhood-based difference[J].Pattern Recognition Letters,2003,24(12):2079-2092
  • 9Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (10):1337-1342
  • 10Yuan Guo-wu. Research on moving objects detection and tracking methods in intelligent visual surveillance system [ D]. Kunming: Yunnan University ,2012.

共引文献95

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部