期刊文献+

最小相关度优化PNARC算法的审计数据关联规则挖掘模型 被引量:2

Research on Audit Data Association Rule Mining Model with Minimal Relevance Optimized PNARC Algorithm
下载PDF
导出
摘要 为解决关系国计民生重要行业事后审计的弊端,本文针对PNARC算法在审计数据关联规则挖掘时存在的置信度约束无效、挖掘精度不高等问题,提出了一种最小相关度优化PNARC算法的审计数据关联规则挖掘模型。首先对置信度进行阈值双重优化,以提高负关联规则的程度,减少不相关的关联规则,然后对最小相关度进行概率分析,降低无关规则的产生几率。仿真实验结果表明,无论在挖掘精度还是算法运行时间上,都具有比PNARC算法更优异的性能。 In order to solve the shortcomings of post-audit related to the important industries of people's livelihood and the people's livelihood, aiming at the problems of invalid confidence constraint and low mining accuracy in the mining of association rules of audit data, this paper proposes an association rule of audit data of PNARC with minimum correlation optimization Mining models. First, the confidence threshold is double-optimized to improve the degree of negative association rules and reduce the irrelevant association rules. Then the probability of the minimum correlation is analyzed to reduce the probability of generating irrelevant rules. Simulation results show that the proposed algorithm has better performance than PNARC algorithm in both the accuracy of mining and the algorithm running time.
作者 于海燕
出处 《科技通报》 北大核心 2017年第12期158-161,共4页 Bulletin of Science and Technology
基金 2017年度苏州工业园区服务外包职业学院校级教改项目(No.JG-201705)
关键词 审计数据挖掘 PNARC算法优化 最小相关度 双重置信度 置信度约束 audit data mining PNARC algorithm optimization minimum relevance double confidence confidence constraint
  • 相关文献

参考文献8

二级参考文献32

  • 1董祥军,宋瀚涛,姜合,陆玉昌.基于最小兴趣度的正、负关联规则挖掘[J].计算机工程与应用,2004,40(27):24-25. 被引量:12
  • 2董祥军,王淑静,宋瀚涛,陆玉昌.负关联规则的研究[J].北京理工大学学报,2004,24(11):978-981. 被引量:33
  • 3陈伟,陈耿,朱文明,王昊.基于业务规则的错误数据清理方法[J].计算机工程与应用,2005,41(14):172-174. 被引量:10
  • 4张倩,王治和,张国治.基于相关系数的正、负关联规则挖掘算法[J].陕西理工学院学报(自然科学版),2005,21(4):35-38. 被引量:9
  • 5陈伟,刘思峰,邱广华.计算机审计中数据处理新方法探讨[J].审计与经济研究,2006,21(1):37-39. 被引量:20
  • 6Monge A E. Matching algorithms within a duplicate detection system [J]. IEEE Data Engineer Bulletin, 2000,23(4) : 14-20.
  • 7Verykios V S, Elmagarmid A K, Houstis E N. Automating the approximate record matching process [ J]. Journal of Information Sciences, 2000,126 ( 1 - 4) : 83 - 98.
  • 8Dey D, Sarkar S, De P. A distance-based approach to entity reconciliation in heterogeneous databases [ J ].IEEE Transactions on Knowledge and Data Engineering,2002,14(3) : 567 -582.
  • 9Chun M, Lam E. Data re-use-the use of data collected in one online audit project for other audit projects [ C ]. In:The Second International Seminar on IT Audit Nanjing, 2004.
  • 10Aggarwal C C, Yu P S. Outlier detection for high dimensional data [ C ].//Aref W G. Proceedings of the ACM SIGMOD International Conference on Management of Data. Los Angeles: CA: ACM Press, 2001.

共引文献56

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部