期刊文献+

基于代价敏感鉴别字典学习的入侵检测方法 被引量:3

Intrusion Detection Method Based on Cost Sensitive Discrimination Dictionary Learning
下载PDF
导出
摘要 针对目前存在的字典学习方法不能有效的构造具有鉴别能力的结构化字典,并且忽视了由于正负类样本数据不均衡造成的代价不同问题,提出了基于代价敏感的鉴别字典学习方法,并将其用于网络入侵检测。首先,重新构建稀疏表示模型,通过在目标函数中设计约束的鉴别项学习具有鉴别性质的字典;其次,考虑到数据集中入侵数据和非入侵数据不平衡,二者的检测代价是不同的,引入代价敏感矩阵来考虑不同的误检测行为代价对于分类性能造成的影响。选择经过预处理的KDD99网络入侵数据集作为实验数据,引入召回率、查准率、错误接受率以及F-measure等指标进行分类器性能评估,并与支持向量机、决策树以及聚类分析等机器学习算法进行实验对比发现,CS-DDL能够较好的改善分类器的性能。 Focusing the issue that sparse representation method can not effectively construct discriminant structured dictionary and neglect the influence to classification result of imbalance by positive and negative samples, proposed dictionary learning based on cost sensitive. Firstly, redesign the sparse representation model to construct structured dictionary by constraint discriminant in the object function;secondly, consider that intrusion samples and non-invasive samples are imbalance, propose cost sensitive matrix to take the misclassification to the detect result into account. Compared with machine learning algorithm such as SVM, Decision Tree and Cluster Analysis on the KDD99 dataset and measured with recall rate, precision rate, false accept rate and F-measure, CS-DDL can obviously improve the classification performance better.
出处 《科技通报》 北大核心 2017年第12期162-166,共5页 Bulletin of Science and Technology
基金 中央高校基本科研业务费专项资金项目(LGYB201605)
关键词 入侵检测 代价敏感 字典学习 分类性能 机器学习 intrusion detection cost sensitive dictionary learning classification performance machine learning
  • 相关文献

参考文献4

二级参考文献48

  • 1D E Denning. An Intrusion Detection Model [ J ]. IEEE Transac- tion on Software Engineering, 2010,13 (2) :222 - 232.
  • 2C L Hang, C J Wang. A GA - based feature selection and parame- ters optimization for support vector machines [ J ]. Expert Systems with Applications, August 2009,31 (2) : 231 -240.
  • 3J Hong, et al. A novel intrusion detection system based on hierar- chical clustering and support vector machines [ J ]. Expert Systems with Applications, 2011 ( 38 ) :306 - 313.
  • 4L Khan, M Awad, B Thuraisingham. A new intrusion detection system using support vector machines and hierarchical clustering [J]. The VLDB Journal, 2007,(16) : 507 -521.
  • 5X S Wang. A new metaheuristic bat- inspired algorithm [ C ]. Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, Springer - Verlag, Berlin Eidelberg, 2010 - 10:65 -74.
  • 6X S Yang. Bat Algorithm for Multi -objective Optimization[ J]. Int. J. Bio - Inspired Computation, 2011,3 (5) : 267 - 274.
  • 7X S Yang, A H Gandomi. Bat Algorithm: A Novel Approach for Global Engineering Optimization [ J ]. Engineering Computation, 2012,29 (5) :267 - 289.
  • 8Elngar A A,El AMD A,Ghaleb F F M.A Real -TimeAnomaly Network Intrusion Detection System with High Ac-curacy[J]. Information Sciences Letters, 2013,35⑶:49-56.
  • 9Subaira. A S, Anitha. P. A Survey: Network Intrusion Detec-tion System based on Data Mining Techniques [J]. Interna-tional Journal of Computer Science & Mobile Computing,2013,2(10):174-185.
  • 10Hsieh C F, Cheng K F, Huang Y F, et al. An Intrusion De-tection System for Ad Hoc Networks with Multi -attacksBased on a Support Vector Machine and Rough Set Theory[J], Journal of Convergence Information Technology, 2013,26(5):269-281.

共引文献55

同被引文献22

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部