期刊文献+

一种基于自适应动态惯性权重加压缩因子的人工藻算法

Artificial Algae Algorithm Based on Self-Adaptive Dynamic Inertia Weight and Compression Factor
下载PDF
导出
摘要 针对标准的人工藻算法(AAA)会由于参数选取不当等原因导致过早收敛和易陷入局部最优解等问题,本文提出一种自适应动态惯性权重(SW)加压缩因子(CF)的人工藻算法(CFSWAAA).为了平衡算法的全局探索和局部改良能力,自适应动态惯性权重被引入到人工藻算法中:为了控制和约束人工藻位置的移动距离,压缩因子被引入到人工藻算法的位置更新中,从而提高算法的收敛速度.最后文章利用4个标准测试函数对改进的算法进行了仿真测试.仿真结果表明,基于自适应动态惯性权重加压缩因子的人工藻算法相比现有的其他四种算法具有较高的优化性能. Artificial algae algorithm( AAA) may convergence early or stuck into local optimization due to improper parameters selection, artificial algae algorithm based on self-adaptive dynamic inertia weight( SW) and compression factor( CF) was proposed. To balance global search and local search,self-adaptive dynamic inertia weight( SW) was introduced to artificial algae algorithm( AAA). The compression factor was introduced into the location update formula of AAA to control the move distance of location of artificial algae,and thus improved the convergence speed of the algorithm. Four benchmark functions were employed to test results compared with the algorithms of other four algorithms.
出处 《安徽师范大学学报(自然科学版)》 CAS 2017年第6期538-543,共6页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(11302002)
关键词 人工藻算法 自适应动态惯性权重 压缩因子 artificial algae algorithm self-adaptive dynamic inertia weight the compres-sion factor
  • 相关文献

参考文献2

二级参考文献19

  • 1王福林,吴昌友,杨辉.用遗传算法求解约束优化问题时初始种群产生方法的探讨[J].东北农业大学学报,2004,35(5):608-611. 被引量:13
  • 2YANG X S. Nature-inspired metaheuristic algorithms[M]. Beckington: Luniver Press, 2008:83-96.
  • 3SRIVATSAVA P, MALLIKARJUN B, YANG X S. Optimal test sequence generation using firefly algorithm[J]. Swarm and Evolutionary Computation, 2013,8(1):44-53.
  • 4YANG X S, DEB S. Eagle strategy using lévy walk and firefly algorithms for stochastic optimization[J]. Studies in Computational Intelligence, 2010,28(4):101-111.
  • 5CHANDRASEKARAN K, SIMON S P. Network and reliability constrained unit commitment problem using binary real coded firefly algorithm[J]. International Journal of Electrical Power and Energy Systems, 2012,43(1):921-932.
  • 6GANDOMI A, YANG X S, TALATAHARI S. Firefly algorithm with chaos[J]. Communications in Nonlinear Science and Numerical Simulation, 2013,18(1):89-98.
  • 7Theofanis Apostolopoulos,Aristidis Vlachos,Hajo Broersma.Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem[J].International Journal of Combinatorics.2010
  • 8J. Senthilnath,S.N. Omkar,V. Mani.Clustering using firefly algorithm: Performance study[J].Swarm and Evolutionary Computation.2011(3)
  • 9Ming-Huwi Horng,Ren-Jean Liou.Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J].Expert Systems With Applications.2011(12)
  • 10刘长平,叶春明.一种新颖的仿生群智能优化算法:萤火虫算法[J].计算机应用研究,2011,28(9):3295-3297. 被引量:163

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部