期刊文献+

一种基于膜计算的交叉口多车协同优化方法(英文) 被引量:1

A new membrane computing-based multi-vehicles optimization method in intersection cooperative driving system
下载PDF
导出
摘要 交叉口协同驾驶系统通过车辆与交叉口控制系统协同工作来实现交通的控制和管理,使得车辆能够安全和有效地通过交叉口。因此,交叉口协同驾驶系统通过多个无法比较的冲突目标实现协同和优化,是一个典型的带约束的多目标优化问题。为了解决交叉口协同控制系统的多目标优化问题,从V2X的角度提出了一种基于改进膜计算系统的多车优化方法。通过种群膜系统刻画了交叉口协同驾驶系统的多目标优化问题,然后通过提出的改进膜计算系统的多车优化方法对交叉口协同驾驶系统的多目标优化问题进行了求解。最后,通过实验和分析表明了提出的方法优于其他4种算法。 The intersection cooperative driving system(ICDS) envisions that vehicles and an intersection controller could cooperatively work together to improve traffic operations and managements so that vehicles can safely and efficiently cross the intersection. Thus, the cooperation and optimization of the ICDS, which is solved simultaneously on incommensurable and conflicting objectives, is a typical multi-objective optimization problem(MOOP) with constrained conditions. For solving the ICDS' s MOOP, an improved membrane computing-based multi-vehicles optimization method (IMC-MOOM) is proposed from vehicle-to-everything (V2X) perspective. In detail, the ICDS' s MOOP is described using population P system, and then the IMC-MOOM is proposed to solve the ICDS' s MOOP. Finally, experimental results and analysis demonstrate that our proposed method is superior or competitive to four optimization evolution algorithms recently reported in the literature.
出处 《机床与液压》 北大核心 2017年第24期81-89,共9页 Machine Tool & Hydraulics
基金 supported by China Postdoctoral Science Foundation Funded Project(No.2015M572450) New technology promotion of higher vocational and technical institutions of Chongqing Municipal Education Commission(No.GZTG201609) the Natural Science Foundation of Chong Qing Science&Technology Commission(No.cstc2016jcyjA 0565) Chongqing Postdoctoral Science special Foundation(No.Xm2015056)
关键词 交叉口协同驾驶系统 V2X P系统 多目标优化 The intersection cooperative driving system, V2X, P system, Multi-objective optimization
  • 相关文献

参考文献1

二级参考文献11

  • 1[1]Deb K.Multi-Objective Optimization Using Evolutionary Algorithms.New York:Wiley,2001
  • 2[2]Schaffer JD.Multiple objective optimization with vector evaluated genetic algorithms.In:Proceedings of an International Conference on Genetic Algorithms and Their Applications sponsored by Texas Instruments and U.S.Navy Center for Applied Research in Artificial Intelligence (NCARAI),1985,93-100
  • 3[3]Zitzler E,Deb K and Thiele L.Comparison of multi-objective evolutionary algorithms:Empirical results.Evol Comput,2000,8(2):173-195
  • 4[4]Zitzler E and Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation,1999,3 (4):257-272
  • 5[5]Serinivas N and Deb K.Multiobjectie optimization using nondominated sorting in genetic algorithms.Evolutionary Computation,1994,2(3):221-248
  • 6[6]Pǎun Gh.Computing with membranes.Journal of Computer and System Sciences,2000,61(1):108-143
  • 7[7]Pǎun Gh.From cells to computers:Computing with membranes (P systems),BioSystems,2001,59(3):139-158
  • 8[8]Alhazov A and Sburlan D.Static sorting P systems.In:Applications of Membrane Computing.Berlin:Springer-Verlag,2005,215-252
  • 9[9]Nishida TY.Membrane algorithms:Approximate algorithms for NP-complete optimization problems.In:Applications of Membrane Computing.Berlin:Springer-Verlag,2005,301-312
  • 10[10]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-2.IEEE Transactions on Evolutionary Computation,2002,6(2):182-197

共引文献9

同被引文献17

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部