期刊文献+

基于改进贝叶斯程序学习的物体形状分类 被引量:2

Object Shape Classification Based on Improved Bayesian Program Learning
原文传递
导出
摘要 为解决传统物体形状分类方法存在训练时间长以及形状描述不准确的问题,提出一种基于改进贝叶斯程序学习的图像分类方法。先将物体轮廓进行预处理并分割为长度固定的轮廓片段,使用形状描述符记录其形状信息,然后采用高斯混合模型对同一类物体的轮廓片段集训练出轮廓片段库,最后从测试图像的轮廓上均匀提取10个轮廓片段作为测试样本的解析,使用贝叶斯分类器计算样本解析与每类轮廓片段库中轮廓片段的拟合相似度,以其相似度值最高的类作为分类结果。在标准数据库Animal上的实验结果表明,本文方法具有较高的分类精度,同时大幅度缩短了训练时间。 In order to solve the problem that the traditional methods of object shape classification spend too much training time and the shape is represented inaccurately, an image classification method is proposed based on the improved Bayesian program learning. Firstly, the preprocessed object contours are segmented into fixed-length fragments and the feature information is represented with the shape descriptors. Then, the contour fragments in the same object class are trained into a contour fragment library using the Gaussian mixture model. Finally, the Bayesian classifier is used to calculate the similarity between the ten fragments of the test object and each contour fragment library, and the classification result is the category with the highest similarity value. The experimental results on standard Animal database show that the proposed method has a good classification accuracy, meanwhile, it greatly shortens the training time.
作者 范强 张善新
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第12期319-325,共7页 Laser & Optoelectronics Progress
关键词 机器视觉 形状分类 贝叶斯程序学习 高斯混合模型 轮廓片段库 形状描述符 machine vision shape classification Bayesian program learning Gaussian mixture model contour fragment library shape descriptor
  • 相关文献

参考文献5

二级参考文献93

  • 1李自勤,李琦,王骐.由统计特性分析激光主动成像系统图像的噪声性质[J].中国激光,2004,31(9):1081-1085. 被引量:27
  • 2贾珈,蔡莲红.基于局部细节特征的二次指纹匹配算法[J].清华大学学报(自然科学版),2006,46(10):1776-1779. 被引量:1
  • 3王志坚,宁新宝,杨小冬.基于类拐点特征向量的多层次指纹分类新方法[J].南京大学学报(自然科学版),2007,43(1):47-55. 被引量:3
  • 4Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
  • 5Latecki L J, Lakamper R, Eckhardt U. Shape descriptors for non-rigid shapes with a single closed contour. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000(1) : 424-429.
  • 6Sun K, Super B. Classification of contour shapes using class segment sets. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005(2): 727-733.
  • 7Latecki L J, Lakaemper R, Wolter D. Optimal partial shape similarity. Image and Vision Computing Journal, 2005, 23: 227-236.
  • 8McNeill G, Vijayakumar S. Part-based probabilistic point matching using equivalence constraints. The 20^th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2006, 969-976.
  • 9Tu Z, Yuille A L. Shape matching and recognition using generative models and informative features. European Conference on Computer Vision, 2004(3023) :195-209.
  • 10McNeill G, Vijayakumar S. A probabilistic approach to robust shape matching. IEEE International Conference on Image Processing, Atlanta, 2006, 937-940.

共引文献43

同被引文献7

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部