摘要
以SiH_4和H_2作为气源,采用热丝化学气相沉积法制备a-Si:H薄膜钝化c-Si表面,采用准稳态光电导法和I-V法分析了工艺参数对钝化效果的影响,采用C-V法和深能级瞬态谱法对钝化后硅片表面的缺陷态进行测试。实验结果表明,在频率为200 kHz时,表面复合速率为54 cm/s的硅片的表面缺陷态密度为1.02×10^(11) eV-1·cm^(-2),固定电荷密度为6.12×10^(11) cm^(-2);本征a-Si:H对硅片表面的钝化效果是由该薄膜在硅片表面引入的氢对应的键终止以及由其引入的固定电荷形成的场钝化效应共同决定的;本征a-Si:H钝化后硅片表面的深能级缺陷特征是电子陷阱,激活能、俘获截面以及缺陷浓度分别为-0.235eV、1.8×10^(-18) cm^2、4.07×10^(13) cm^(-3)。
Using SiH4 and H2 as sources, we use hot-wire chemical vapor deposition to prepare intrinsic amorphous silicon (a-Si: H) on c-Si wafers surface. Quasi-steady state photo conduction method and Ⅰ-Ⅴ method are used to analyze the influence of process parameters on the passivation effect. C-V method and deep level transient spectroscopy (DLTS) method are employed to test the defect state of the passivated silicon wafer surface. The experimental results show that, under the condition of 200 kHz, the surface defect density of the c Si wafer with surface recombination velocity of 54 cm/s is 1. 02 × 1011 eV-1 · cm-2 and the fixed charge density is 6.12 × 1011 cm-2 . The passivation effect of a-Si: H on the surface of the silicon wafer is determined by the dangling bond on the surface of the thin film silicon saturated by hydrogen bond and the surface fixed charges forming the field passivation effect. The a-Si: H passivated deep-level defect on the surface of the wafer is characterized as electron trap. The active energy, capture cross section and defect concentration is 0. 235 eV, 1.8× 10-18 cm2, and 4.07 ×1013 cm-3 , respectively.
出处
《激光与光电子学进展》
CSCD
北大核心
2017年第12期364-369,共6页
Laser & Optoelectronics Progress
基金
江西省重点研发计划-技术引进与合作研究-重点项目(2016BBH80043)
国家自然科学基金(61306084
61464007
51561022
11664025)
江苏省能量转换材料与技术重点实验室开放课题(NJ20160032)
毫米波国家重点实验室开放课题(K201606)
江西省自然科学基金(20161BAB201012)
江西省教育厅科学技术研究重点项目(GJJ150021)
关键词
薄膜
非晶硅钝化
表面缺陷
DLTS
激活能
俘获截面
thin films
amorphous silicon passivation
surface defect
DLTS
activation energy
capture cross section