期刊文献+

欧氏平面R^2中几个加强的Minkowski不等式(英文)

Some strengthened Minkowski inequalities in the Euclidean plane R^2
下载PDF
导出
摘要 运用积分几何中的平移包含测度,估计对称混合等似亏格Δ_2(K_0,K_1)=A_(01)~2-A_0A_1,其中A_(01)是凸域K_0与K_1的混合面积。获得了欧氏平面R^2中一些加强的Minkowski不等式。 Via the the translative containment measure in integral geometry, we estimate the symmetric mixed isohomo- thetic deficit A2 (Ko,Kt ) = A21^2 -AoA1 , where A0j is the mixed area of two convex domains Ko,K1 in the Euclidean plane R2 . We obtain some some strengthened Minkowski inequalities in R2 .
出处 《贵州师范大学学报(自然科学版)》 CAS 2017年第6期82-88,共7页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(NO.11401486,11561012) 贵州师范大学2017年博士科研项目
关键词 MINKOWSKI不等式 加强的Minkowski不等式 平移包含测度 对称混合等似亏格 Minkowski inequality strengthened Minkowski inequality translative containment measure symmetricmixed isohomothetic deficit
  • 相关文献

参考文献2

二级参考文献22

  • 1Ralph Howard.Blaschke’s rolling theorem for manifolds?with boundary[J]. manuscripta mathematica . 1999 (4)
  • 2Bottema O.Eine obere Grenze fur das isoperimetrische Defizit ebener Kurven. Nederl Akad Wetensch Proc . 1933
  • 3Grinberg E,Ren D,Zhou J.The symmetric isoperimetric deficit and the containment problem in a plane of constant curvature. .
  • 4Zhou J.Tne Willmore inequalities for submanifolds. Canadian Mathematical Bulletin . 2007
  • 5Zhou J,Chen F.The Bonnesen-type inequality in a plane of constant cuvature. Journal of the Korean Mathematical Society . 2007
  • 6Zhou J,Xia Y,Zeng C.Some new Bonnesen-style inequalities. Journal of the Korean Mathematical Society .
  • 7Chou S C,Gao X S,Zhang J Z.Machine Proofs in Geometry. . 1994
  • 8Santalo LA.Integral Geometry and Geometric Probability (Encyclopedia of mathematics and its applications ; v1 : Section, Probability). . 1976
  • 9W. Blaschke.Kreis und Kugel. . 1956
  • 10Burago,Y. D.,Zalgaller,V. A. Geometric Inequalities (Grundleheren Math. Wiss., Bd. 285) . 1988

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部