期刊文献+

基于CSR1000的燃料堆内辐照验证试验回路试验段初步概念设计与分析

Pre-Conceptual Design and Analysis of a SCWR-FQT Loop Test Section Based on CSR1000
原文传递
导出
摘要 提出了2种基于中国超临界水冷堆(CSR1000)燃料元件的燃料验证试验回路试验段的概念设计方案——2×2组件方案、3×3组件方案;利用MCNP程序和CFX程序进行了中子学、热工水力学分析,并对不同方案进行初步评价。分析结果表明:2种方案均具备工程可行性,满足燃料验证试验需求,但两者存在显著的性能差异;2×2组件方案的燃料棒功率为23.6~25.3 k W,平均功率为24.3 k W,组件的径向功率峰因子为1.04;3×3组件方案的燃料棒功率为15.9~26.7 k W,平均功率为21.4 k W,组件的径向功率峰因子为1.25;3×3组件方案的组件功率峰因子较大,不利于功率展平,限制了组件平均功率的提高。对采用无绕丝组件的热工分析表明:2种方案的冷却水出口温度均超过25 MPa压力下的拟临界温度,燃料芯块温度、燃料包壳外表面温度均低于热工限值且留有裕量。 Two preliminary conceptual designs of test section for fuel qualification test loop based on China's supercritical water-cooled reactor (CSR1000) fuel element is proposed, which are the 2×2 assembly design and the 3×3 assembly design. The MCNP code and the CFX code are used to proceed the neutron, the thermal-hydraulic analysis and the preliminary evaluation of different designs. The results show that the two designs are engineering feasible and meet the requirements of fuel qualification test, but there are significant differences in performance. The fuel rod power of the 2×2 assembly is 23.6 - 25.3 kW and the average power is 24.3 kW, while these values for 3×3 design are 15.9-26.7kW and 21.4kW, respectively. The radial power peak factor of fuel assembly for 3×3 design is 1.25, which is not conducive to fuel assembly power flattening, limiting the average power of the assembly. The preliminary thermal-hydraulic analyses with wireless fuel assembly indicate that the outlet coolant temperature of the two designs exceeds the quasi-critical temperature of the pressure of 25MPa, and the fuel pellet temperature and the fuel cladding outer surface temperature are lower than the design limits, allowing certain safety margins.
出处 《核动力工程》 EI CAS CSCD 北大核心 2017年第6期92-98,共7页 Nuclear Power Engineering
关键词 超临界水冷堆 燃料验证试验回路 中子学 热工水力学 MCNP CFX Supercritical water cooled reactor, Fuel qualification test loop, neutronics, Thermal- hydraulics, MCNP, CFX
  • 相关文献

参考文献3

二级参考文献21

  • 1余健开,李松阳,王侃,王冠博,余纲林.反应堆用核截面处理程序RXSP的研发与验证[J].核动力工程,2013,34(S1):10-13. 被引量:9
  • 2梁法春,王栋,林宗虎.超临界区水的拟临界温度的确定[J].动力工程,2004,24(6):869-870. 被引量:11
  • 3邱立青,傅蓉,邓才玉.高通量工程试验堆与MCNP程序的接口程序的开发[J].核动力工程,2007,28(4):16-19. 被引量:4
  • 4Yamaji A,Kamai K,Oka Y. Improved Core Design of the High Temperature Supercritical-Pressure Light Water Reactor[J].Annals of Nuclear Energy,2005.651-670.
  • 5Schulenberg T,Starflinger J. Core Design Concepts for High Performance Light Water Reactors[J].Nuclear Engineering and Technology,2007,(40):249-256.
  • 6Ma Y;Chai X;Wang Y.Development of the CASIR Code System for SCWR Core Steady State Design[A]陕西西安,2012.
  • 7Oka Y,Koshizuka S,Ishiwatari Y. Super Light Water Reactors and Super Fast Reactors[M].New York:Springer Science,2010.
  • 8Cheng X,Schulenberg T. Heat Transfer at Supercritical Ressures-Literature Review and Application to an HPLWR.FZKA 6609[R].Karlsruhe:lnstitut fur Kem-und Energietechnik,2001.
  • 9Pioro I L,Duffey R B. Heat Transfer and Hydraulic Resistance at Supercritieal Pressures in PowerEngineering Applications[M].New York:ASME Press,2007.
  • 10杨翔翔.关于水蒸汽在超临界区的相变[J]福州大学学报,197954-60.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部