期刊文献+

基于小波分解的油井加速度信号的周期计算 被引量:1

Calculation of Pumping Unit Acceleration Signal Period Based on Wavelet Decomposition
下载PDF
导出
摘要 抽油机运动周期作为示功图的重要参数,其准确性直接影响示功图的精度。针对悬点加速度信号周期难确定等问题,以及小波分解对信号进行时域和频域分析的强大功能。本文提出采用Meyer小波对加速度信号进行处理的方法。首先通过小波分解提取有效低频信号,再利用最小二乘原理对有效信号进行周期函数的拟合,仿真结果验证了算法的可靠性。最后以中原油田某油井80组加速度数据为依据,通过对比低通滤波后曲线拟合所得加速度周期和小波分解后计算的周期的标准差,得出基于Meyer小波分解的方法得到周期更准确的结论。 Pumping motion period is an important parameter of the dynamometer card, whose exactitude affects the accuracy of the dynamometer card directly. Aiming at the problem that (it is hard to determine the signal period) the signal period is difficult to be determined and the advantage that the wavelet decomposition has in signal time domain and frequency domain analysis, th paper proposed a method using Meyer wavelet to process the acceleration signal. Firstly, the effective low frequency signal was extracted by wavelet decomposition, then the least square principle was used to fit the effective signal. The simulation results show the reliability of the algorithm. At last, according to the 80 group acceleration data of the oil well in Zhongyuan Oilfield, a contrast experiment was taken using low - pass filtering method and the wavelet decomposition method. The standard difference results of the period show that the method based on Meyer wavelet decomposition can get more accurate conclusion period.
出处 《计算机仿真》 北大核心 2017年第12期96-100,共5页 Computer Simulation
基金 河南省高等学校重点科研项目(15A460023) 国家自然科学基金项目(0906022)
关键词 示功图 加速度 最小二乘拟合 周期计算 Dynamometer card Acceleration Least - squares approximation Calculation period
  • 相关文献

参考文献5

二级参考文献32

  • 1黄继吕 季纸发 过润秋 等.传感器工作原理及应用实例[M].北京:人民邮电出版社,1998.26,53.
  • 2林海雪.论电能质量标准[J].中国电力,1997,30(3):9-10. 被引量:60
  • 3Garrido M, Grajal J. Efficient memoryless CORDIC for FFT computation. Imemational[C]. //Conference on Acoustics, Speech and Signal Procession (ICASSP2007). IEEE, II, 2007: 113-116.
  • 4Panda G, Dash K P, Pradhan K A, et al. Data compression of power quality events using the slantlet transform[J]. IEEE Trans on Power Delivery, 2002, 17(2) : 662-667.
  • 5Lin H C. Inter-harmonic identification using group- harmonic weighting approach based on the FFT[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1309-1319.
  • 6Wang H, Li Q N, Wu M L. Investigation on a new algorithm for instantaneous reactive and harmonic currents detection applied to intensive nonlinear loads[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2312-2318.
  • 7LI Chun, XU Wilson. On the ambiguity of defining and measurging inter-harmonic[J]. IEEE Power Engineering Revier, 2001, 15(1): 56-57.
  • 8Chang Y P, Low C. Optimization of a passive harmonic filter based on the neural-genetic algorithm with fuzzy logic for a steel manufac-turing plant[J]. Expert Systems with Applications, 2008, 34(3): 2059-2070.
  • 9Lin H C. Intelligent neural network-based fast power system harmonic detection[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 43-52.
  • 10Yong Sheng, Rovnyak S M. Decision trees and wavelet analysis for power transformer protection[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 429-433.

共引文献142

同被引文献8

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部