期刊文献+

基于多特征融合及PSVM的车辆检测研究

Study on Detecting Method of Preceding Vehicle Based on Multi-Feature Fusion and PSVM
下载PDF
导出
摘要 针对传统单目视觉车辆检测系统准确度及实时性方面研究的不足,提出一种融合多特征的单目视觉车辆检测方法。在车辆假设阶段,结合车辆底部阴影、水平边缘、竖直边缘等多特征融合来产生车辆感兴趣区域,从而产生车辆假设目标;在车辆确认阶段,通过垂直梯度直方图来提取车辆竖直边缘特征,运用于最邻近支持向量机训练器的训练。最后,通过训练好的最邻近支持向量机训练器来对车辆假设进行进一步的确认,从而排除虚假目标。实验结果表明,上述车辆在车辆检测时准确度很高且实时性较好。 This paper proposes a monocular vision vehicle detection method with multi -feature fusion. This method aims at the shortcomings of low accuracy and poor real - time effect of the traditional monocular vision vehicle detection system. At the stage of vehicle hypothesis, the vehicle's interest area was generated by combining multi - feature vision, such as the shadow of vehicle bottom, horizontal edge and vertical edge, so as to generate vehicle hypothetical target. At the vehicle confirmation stage, the vertical gradient of the vehicle was extracted by the vertical histogram, which was applied to the training of proximal support vector machine trainer. Finally, the trained proximal support vector machine trainer was employed to further confirmation of the vehicle hypothesis, so as to eliminate the false targets. The experimental results show that the vehicle in this paper is very accurate and has excellent real time effect during the detection test.
出处 《计算机仿真》 北大核心 2017年第12期326-330,共5页 Computer Simulation
关键词 二维大津法 边缘检测 垂直梯度直方图 最邻近支持向量机 Two - dimensional OTSU Edge detection Vertical histogram of Oriented Gradient Proximal supportvector machines ( PSVM )
  • 相关文献

参考文献5

二级参考文献57

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图象图形学报(A辑),2005,10(4):484-488. 被引量:121
  • 3SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [ J ]. Journal of Electronic Imaging, 2004,13 ( 1 ) : 146-165.
  • 4OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transaction on System Man and Cybernetic, 1979,9( 1 ) :62-66.
  • 5VIOLA P , JONES M . Rapid object detection using a boosted cascade of simple features [ C ]. Proc. CVPR. Volume I. (2001) :511-518.
  • 6MICHAEL G, HELMUT G, HORST B. Fast approximated SIFT[C]. Proc. ACCV. (2006):918-927.
  • 7R Gregor, et al. EMS - Vision: A Perceptual System for Autonomous Vehicles[ J]. IEEE Transaction on Intelligent Transportation Systems, 2002,3 ( 1 ) :48 - 59.
  • 8F Dellaert, D Pomerleau and C Thorpe. Model - Based Car Tracking Integrated with a Road Follower[ C]. International Conference on Robotics and Automation, 1998.71 -76.
  • 9M Bertozzi, A Broggi. GOLD: A Parallel Real Time Stereo Vision System for Generic Obstacle and Lane Detection[ J ]. IEEE Transaction on Image Processing, 1998, 7 (1) :62 -81.
  • 10M Schwarzinger, et al. Vision - Based Car Following: Detection, Tracking and Identification[ C ]. Proceedings of the Intelligent Vehicles 92 Symposium, 1992.24 - 29.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部