期刊文献+

多糖酶法改性研究进展 被引量:4

Research Progress on Enzymatic Modification of Polysaccharides
下载PDF
导出
摘要 多糖是一种在自然界分布极广的天然生物大分子,具有生物相容性、可接受性和可降解性,被广泛应用于食品、药品、化妆品以及化工行业产品中。然而,由于某些多糖水溶性差或天然多糖不具备一些功能特性,其应用受到了限制。利用物理、化学或酶改性方法对多糖结构进行修饰,改善了其功能特性,扩大了其应用范围。酶具有高效性、特异性和选择性,酶法改性多糖安全性高、条件温和且环境友好,是一种极具潜力的多糖改性方法。酶法对多糖进行改性主要包括对多糖的水解和共价接枝。主要以多酚氧化酶、过氧化物酶、转谷氨酰胺酶和脂肪氧化酶等为例,介绍了近年来多糖酶法改性的研究进展,主要综述了酶法改性酶的种类、多糖改性方法和反应类型,讨论了改性多糖的功能特性,并对其应用前景进行展望。 Polysaccharides were biocompatible, adaptable and biodegradable natural biopolymers which can be found in almost all living organisms. They were used extensively in various industries, such as food, pharmaceuticals, cosmetics and chemical products. However, their practical application was limited, as certain polysaccharides had poor water solubility and need to be endowed with novel functions. Physical, chemical or enzymatic modification of their structure appears as an available method, to improve their functional properties, and thus to expanded the field of applications. Enzymes were provided with high efficiency, specificity and selectivity properties. Enzymatic modification of polysaccharide was considered the most potential method, because of the advantages of high safety, mild reaction conditions, eco - efficiency and green chemistry. The present article comprehensively reviews the enzymatic modification (hydrolysis and covalent grafting ) of polysaccharides using several well - known enzymes, including polyphenol oxidase, peroxidase transglutaminase, lipoxygenase and so bout the sorts of enzyme, the grafting methods and the reaction types. The on. Particular emphasis was presented aimpact of modification on the functional properties and the applications of polysaccharide derivatives were discussed.
出处 《中国粮油学报》 EI CAS CSCD 北大核心 2017年第12期134-140,共7页 Journal of the Chinese Cereals and Oils Association
基金 国家自然科学基金(31371835)
关键词 多糖 酶法改性 功能特性 polysaccharides, enzymatic modification, functional properties
  • 相关文献

参考文献1

二级参考文献20

  • 1Martino A D, Sittinger M, Risbud M V. Biomaterials, 2005, 26: 5983-5990.
  • 2Zhang L, Ao Q, Wang A J, Lu G G, Kong L J, Gong Y D, Zhao N M, Zhang X F. Journal of Biomedical Materials Research Part A, 2007, 77A: 277-284.
  • 3Yao F G, Chen W, Wang H, Liu H F, Yao K D, Sun P C, Lin H. Polymer, 2003, 44: 6435-6441.
  • 4Luckachan G E, Pillai C.K.S. Carbohydrate Polymers, 2006, 64: 254-266.
  • 5Li L H, Zhou C R, Ding S. Journal of applied polymerscience, 2004, 91:274~277.
  • 6Wang J L, Wang, L, Dong C M. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 5449-5457.
  • 7Uyama H, Kobayashi S. Chemistry letters, 1993, 7: 1149-1150.
  • 8Fujioka M, Okada H, Kusaka Y, Nishiyama S, Noguchi H, Ishii S, Yoshida Y. Macromolecular Rapid Communications, 2004, 25: 1776-1780.
  • 9Ge H C, Pang W, Luo D K. Carbohydrate Polymers, 2006, 66: 372-378.
  • 10Singh V, Tiwari A, Tripathi D N, Sanghi R. Polymer, 2006, 47: 254-260.

共引文献2

同被引文献50

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部