摘要
极值度量是经典共形几何与拟共形几何中重要的研究对象,定义在拓扑四边形上的离散极值度量是平坦度量,由此平坦度量可以构造一种巧妙的组合结构.利用拓扑四边形的离散极值度量,可以实现一种新的共形参数化方法.
Extremal length is a central tool in the literature of conformal and quasiconformal maps. Discrete ex- tremal length defined on topological quadrilateral is a fiat metric, which can be utilized to construct a marvelous combinatorial structure. A novel conformal parameterization method is proposed by use of discrete extremal length defined on topological quadrilateral surfaces.
出处
《昆明理工大学学报(自然科学版)》
CAS
2017年第6期120-124,共5页
Journal of Kunming University of Science and Technology(Natural Science)
基金
国家自然科学基金项目(11461037)
关键词
平坦度量
极值度量
拓扑四边形
fiat metric, extremal length, topological quadrilateral