期刊文献+

基于改进压缩跟踪算法的航拍视频目标跟踪系统

Aerial Video Tracking System Based on Improved Compression Tracking Algorithm
下载PDF
导出
摘要 针对航拍视频的特性,对经典的压缩跟踪(Compression tracking,CT)算法进行了研究,发现了CT算法在样本采集和分类取样步骤中的不足并进行了相应的改进。采用Kalman滤波器预测目标的运动路径,并将预测结果应用于样本采集,自适应地修改搜索范围。更新了分类器的取样反馈过程,先对分类结果进行判断,评分绝对值低于某一阈值的分类结果不反馈给分类器,有效地保持了分类器的正确性。在改进算法的基础上,开发了基于航拍视频的目标跟踪系统。通过与经典压缩跟踪算法在实际航拍道路视频的测试和对比,验证了本文算法的有效性和实时性。 An improved compression tracking (ICT) algorithm is proposed based on the characterisucs of aerial video. After study on classic compression tracking(CT) algorithm, some shortcomings in sample collection and classification of the sampling processing are found and improved. Kalman filter is used to predict the target movement path and the prediction results are applied to sample collection for adaptive research. The sampling and feedback of the classifier are updated by using the classification results after determined. Values lower than a certain threshold are not transfered to the classifier for classification, which ensures the correctness and the accuracy of the feedback of the classifier. Based on the proposed algorithm, a target tracking system is implemented for aerial video. Compared with the classic compression tracking algorithm in real aerial video, the effectiveness and real-time performance are tested and verified.
出处 《数据采集与处理》 CSCD 北大核心 2017年第6期1248-1253,共6页 Journal of Data Acquisition and Processing
基金 江苏省高校品牌专业建设工程资助项目 江苏省现代教育技术研究课题(2014-R-29883)资助项目 江苏省重点建设实验室数字媒体艺术创意与应用实验室资助项目
关键词 航拍视频 目标跟踪 压缩感知 压缩跟踪 aerial video object tracking compression sensing compression tracking
  • 相关文献

参考文献3

二级参考文献31

  • 1崔少辉,戴明桢.利用推广卡尔曼滤波实现纯方位目标跟踪[J].南京航空学院学报,1989,21(2):77-83. 被引量:1
  • 2高璐,张大志,田金文.红外序列图像目标跟踪的自适应Kalman滤波方法[J].红外与激光工程,2007,36(5):729-732. 被引量:6
  • 3Yilmaz A, Javed O, Shah M, et al. Object tracking: A survey. ACM Computing Surveys, 2006,38(4) :13.
  • 4Cannons K. A review of visual tracking. Technical Report CSE-2008-07, York University, Canada, 2008.
  • 5Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via multi-task sparse learning. In.. IEEE Conference on Computer Vision and Pattern Rec- ognition(CVPR 2012). Providence, RI USA: IEEE,2012,2042--2049.
  • 6Bao C,Wu Y,Ling H,et al. Real time robust ll tracker using accelerated proximal gradient approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Providence, RI USA.. IEEE, 2012,1830-- 1837.
  • 7Ka[al Z,Mikolaiczyk K, Matas J, et at. Tracking learning detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34 (7) .. 1409--1422.
  • 8Zhang L, Dibekliogbrave H, Maaten L, et al. Speeding up tracking by ignoring features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus, OH USA.. IEEE, 2014,1266-- 1273.
  • 9Zhang K, Zhang L, Yang M H, et al. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10) ..2002--2015.
  • 10Zhang K, Zhang L, Liu Q, et al. Real time compressive tracking. In: Proceedings of the 12th European Conference on Computer Vision(ECCV 2012 ). Florence, Italy : Springer, 2012,864 -- 877.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部