期刊文献+

Research on Adaptive Optics Image Restoration Algorithm Based on Improved Joint Maximum a Posteriori Method 被引量:1

Research on Adaptive Optics Image Restoration Algorithm Based on Improved Joint Maximum a Posteriori Method
原文传递
导出
摘要 In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio (PSNR) and Laplacian sum (LS) value than the others. The research results have a certain application values for actual AO image restoration. In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio (PSNR) and Laplacian sum (LS) value than the others. The research results have a certain application values for actual AO image restoration.
出处 《Photonic Sensors》 SCIE EI CAS CSCD 2018年第1期22-28,共7页 光子传感器(英文版)
基金 This research is supported by the State Scholarship Fund of China (No. 201508220093), the National Science Foundation of China (No. 61402193), the Scientific and Technological Research Project of the Department of Education in Jilin Province (No. JJKH20170575KJ, and No. 2014142), and the Postdoctoral sustentation Fund of Jilin Province, the Department of Science and Technology of Jilin Province (No. 20160418080).
关键词 Image restoration adaptive optics (AO) point spread function (PSF) joint maximum a posteriori (JMAP) blind deconvolution Image restoration adaptive optics (AO) point spread function (PSF) joint maximum a posteriori (JMAP) blind deconvolution
  • 相关文献

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部