摘要
根据秸秆类生物质灰成分和灰软化温度实测数据构成的数据样本,采用灰色关联度分析法研究灰成分对灰软化温度的影响,建立灰软化温度GM(0,8)预测模型。结果表明:该预测模型预测精度较高,适用于预测秸秆类生物质灰软化温度,具有工程应用价值。
Based on the data samples which constituted by ash composition of straw biomass and softening temperature, the effect of ash composition on softening temperature was studied using grey correlation degree analysis, the ash softening temperature prediction model GM (0, 8) was established. The resuhs show that the prediction precision of GM (0, 8) prediction model is higher, and is applicable to the ash softening temperature prediction of straw biomass, which has important engineering application value.
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2017年第12期3450-3454,共5页
Acta Energiae Solaris Sinica
基金
国家自然科学基金(51276023)
"可再生能源电力技术"湖南省重点实验室基金(2011KFJJ002)
中央高校基本科研业务费专项(2010QZZD0106)