期刊文献+

调查传播算法收敛的一个充分条件 被引量:7

Sufficient conditions for convergence of the survey propagation algorithm
原文传递
导出
摘要 信息传播算法求解可满足问题时有良好的有效性,使得难解区域变窄.然而,信息传播算法不总有效,常表现为不收敛.对于这种现象,至今缺少系统的理论解释.调查传播(survey propagation,SP)算法是最为有效的信息传播算法,对SP算法的收敛性研究是设计其他信息传播算法的重要基础,并为信息传播算法的广泛应用提供理论依据.为了分析SP算法的收敛性,通过对消息更新方程取双曲正切,将消息取值从[0,1]扩展为(-∞,∞),利用压缩映射原理给出了SP算法收敛的一个充分条件.基于随机3-SAT实例,给出了SP算法收敛的一个概率条件.最后,选取了随机3-SAT实例进行数值实验模拟,验证了该条件的有效性. Message propagation algorithms are very effective at finding satisfying assignments for SAT instances,and hard regions of a random SAT have become narrower. However, message propagation algorithms do not always converge for some random SAT instances. Unfortunately, a rigorous theoretical proof of this phenomenon is still lacking. The survey propagation(SP) algorithm is very effective at solving SAT instances, and a theoretical analysis of SP is very important in designing other message passing algorithms. Through this study, we derived the sufficient conditions for convergence of SP with extending message [0, 1] to message(-∞, ∞). Finally,the experiment results show that the conditions for the convergence of SP are very effective in random 3-SAT instances.
出处 《中国科学:信息科学》 CSCD 北大核心 2017年第12期1646-1661,共16页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61462001 61650206 61563001 61402017) 计算机应用技术自治区重点学科建设基金资助项目
关键词 调查传播算法 可满足性问题 收敛性 信息传播算法 因子图 survey propagation algorithms, satisfiability problems, convergence, message passing algorithms, factor graph
  • 相关文献

参考文献5

二级参考文献88

  • 1许可,李未.The SAT phase transition[J].Science China(Technological Sciences),1999,42(5):494-501. 被引量:1
  • 2Bourgain J. Sharp thresholds of graph properties and the k-SAT problem. Journal of The American Mathematical Society, 1999, 12(4):1017-1054. [doi: 10.1090/S0894-0347-99-00305-7].
  • 3Kirkpatrick S, Selman B. Critical behavior in the satisfiability of random Boolean formulae. Science, 1994,264(5163): 1297-1301. [doi: 10.1126/science.264.5163.1297].
  • 4Kaporis A, Kirousis L, Lalas E. The probabilistic analysis of a greedy satisfiability algorithm. Random Structures & Algorithms, 2006,28(4):444-480. [doi: 10.1002/rsa.v28:4].
  • 5Dubois O, Boufkhad Y, Mandler J. Typical random 3-sat formulae and the satisfiability threshold. Electronic Colloquium on Computational Complexity, 2003,10(007): 1-2.
  • 6Moskewicz MW, Madigan CF, Zhao Y. Chaff: Engineering an efficient SAT solver. In: Proc. of the 38th Annual Design Automation Conf. (DAC 2001). New York: ACM, 2001. 530-535. [doi: 10.1145/378239.379017].
  • 7Aurell E, Gordon U, Kirkkpatrick S. Comparing beliefs, surveys, and random walks. Advances in Neural Information Processing Systems, 2004,17(1): 1-8.
  • 8Mezard M, Parisi G. The cavity method at zero temperature. Journal of Statistical Physics, 2003,111(1-2):1-34. [doi: 10.1023/ A: 1022221005097].
  • 9Mezard M, Zecchina R. Random k-satisifability problem: From an analytic solution to an efficient algorithm. Physical Review E, 2002,66(5):056126. [doi: 10.1103/PhysRevE.66.056126].
  • 10Maneva E, Mossel E, Wainwright M. A new look at survey propagation and its generalizations. Journal of the ACM, 2007,54(4): 1089-1098. [doi: 10.1145/1255443.1255445].

共引文献36

同被引文献43

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部