期刊文献+

基于大数据的大型活动拥挤踩踏事故预警分析研究 被引量:14

Research on early warning analysis of crowded stampede accident in large-scale activity based on big data
下载PDF
导出
摘要 为预防大型活动拥挤踩踏事故发生,以拥挤踩踏事故为研究对象,结合系统安全理论和预警原理,运用大数据技术建立拥挤踩踏事故预警模型。以上海外滩拥挤踩踏事故为实例,通过热力图预警分析、人群流向预警分析和地图搜索量预警分析,在事故发生前进行监测、识别、诊断和评价,得出存在事故早期征兆,属于Ⅱ级预警范围,应启动预警对控措施;并将预控对策与当晚实际事故发生过程中采取的对策进行对比,进一步说明基于大数据技术的拥挤踩踏预警对上海外滩拥挤踩踏事故预防和控制的有效性,相关预警技术和方法可为大型活动科学预防和控制拥挤踩踏事故提供技术支撑。 To prevent the occurrence of crowded stampede accidents in the large-scale activity,an early warning model of crowded stampede accident was established by using the big data technology through taking the crowded stampede accidents as the research object and combining with the system safety theory and the early warning principles.Taking the Shanghai Bund crowded stampede accident as the case,the monitoring,identification,diagnosis and evaluation were carried out before the occurrence of the accident through the early warning analysis on the thermodynamic diagram,the crow flow direction and the map search volume.The results showed that there existed the early signs of accident,which belonged to the scope of Ⅱgrade early warning,so the early warning control measures should be started.The prevention and control measures were compared with the countermeasure adopted in the process of accident case,which further proved the effectiveness of crowded stampede early warning based on big data technology for the prevention and control of Shanghai Bund crowded stampede accident.It provides the technical support for the scientific prevention and control of crowded stampede accidents in the large-scale activity.
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2017年第12期58-66,共9页 Journal of Safety Science and Technology
基金 中国劳动关系学院2017年研究生教育教学改革项目(YJG1701) 国家安监总局2017安全生产重特大事故防治关键技术科技项目(beijing-0001-2017AQ)
关键词 拥挤踩踏 预警模型 大数据技术 预控对策 crowded stampede early warning model big data technology prevention and control measures
  • 相关文献

参考文献10

二级参考文献108

共引文献133

同被引文献171

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部