期刊文献+

柱(球)非线性薛定谔方程的精确解 被引量:4

Exact Solutions of Cylindrically(Spherically) Nonlinear Schrdinger Equation
下载PDF
导出
摘要 研究了柱(球)非线性薛定谔方程(CS-NLS),导出了一个CS-NLS与变系数非线性薛定谔方程(NLS)之间的相似变换,变系数NLS的解可用G'/G-展开法获得。根据该相似变换,分别利用变系数NLS以及常系数NLS的解,得到了CS-NLS的精确解。特别地,还得到了色散系数和非线性系数均为常数的CS-NLS的精确解。 The cylindrically( spherically) nonlinear Schrdinger equation( CS-NLS) was studied. A similarity transformation between the CS-NLS and NLS with variable coefficients was obtained. The solutions of the NLS with variable coefficients were obtained by using G'/G-expansion method. According to the similarity transformation,by using the solutions of NLS with variable coefficients and solutions of NLS with constant coefficients,the exact solutions of the CS-NLS were obtained.Specially the exact solutions of the CS-NLS withconstant disperson coefficient and nonlinear coefficient are obtained.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2018年第2期83-86,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(51675161) 河南科技大学大学生研究训练计划(SRTP)基金项目(2017159)
关键词 柱(球)非线性薛定谔方程 变系数非线性薛定谔方程 相似变换 G'/G-展开法 精确解 cylindrically(spherically) nonlinear Schrdinger equation nonlinear Schrdinger equation with variable coefficients similarity transformation G'/G-expansion method exact solution
  • 相关文献

参考文献3

二级参考文献21

  • 1Deng S F,Chen D Y.The Backlund Transformation and Novel Solutions for the Toda Lattice[J].Chaos,Solitons & Fractals,2005,23:1169-1175.
  • 2Wang Z,Zhang H Q.Soliton-like and Periodic form Solutions to (2+1)-dimensional Toda Equation[J].Chaos,Solitons & Fractals,2007,31:197-204.
  • 3Wang M L,Li X Z,Zhang J L.The (G'/G)-expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics[J].Phys Lett A,2008,372:417-423.
  • 4Aslan I.Discrete Exact Solutions to Some Nonlinear Differential-difference Equations via the (G'/G)-expansion Method[J].Applied Mathematics and Computation,2009,215:3140-3147.
  • 5Chow K W.Rational Function Representations of Wave Patterns in Higher-dimensional and Discrete Evolution Equations[J].Phys Let A,2004,326:404-411.
  • 6Chow K W,Conte R,Xu N.Analytic Doubly Periodic Wave Patterns for the Integrable Discrete Nonlinear Schr(o)dinger(Ablowitz-Ladik) Model[J].Phys Lett A,2006,349:422-429.
  • 7Hu X B,Ma W X. Application of Hirota' s Bilinear Formalism to the Toeplitz Lattice-some Special Soliton-like Solutions [ J]. Phys Lett A,2002,293:161 - 165.
  • 8Nimmo J J C. Darboux Transformations for Discrete Systems [ J ]. Chaos, Solitons and Fractals,2000,11 : 115 - 120.
  • 9Sun M N, Deng S F, Chen D Y. The Backlund Transformation and Novel Solutions for the Toda Lattice [ J ]. Chaos, Solitons and Fractals ,2005,23 : 1169 - 1175.
  • 10Zou L,Wang Z, Zong Z. Generalized Differential Transform Method to Differential-difference Equation [ J]. Phys Lett A, 2009,373:4142 - 4151.

共引文献7

同被引文献22

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部