期刊文献+

保持(r,s)-一致相对熵的映射结构

The map structure of keeping the (r,s)-unified relative entropy
下载PDF
导出
摘要 利用(r,s)-一致相对熵的概念,在附加广义逆的条件下,将有关Von Neumann相对熵的非负性、联合凸性等基本性质推广到(r,s)-一致相对熵的情形.同时推广了Molnr给出的保持经典Von Neumann相对熵不变的映射结构的结论,将其映射结构扩展到更为广义的(r,s)-一致相对熵的情形. By using the definition of the(r,s)-unified relative entropy,based on the generalized inverse of additional conditions,some properties of Von Neumann relative entropy such as non negativity,joint convexity are popularized on the(r,s)-unified relative entropy.At the same time,the conclusion of Molnr of the classical Von Neumann relative entropy invariant mapping structure is generalized,and the results are extended to more generalized(r,s)-consistent relative entropy.
作者 杨鎏 刘璐
出处 《西安工程大学学报》 CAS 2017年第6期841-846,共6页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金资助项目(11471202) 陕西学前师范学院科研基金资助项目(2016YBKJ078)
关键词 (r s)-一致子熵 (r s)-一致相对熵 保持映射结构 (r s)-unified entropy (r s)-unified relative entropy keep the mapping structure
  • 相关文献

参考文献2

二级参考文献18

  • 1BAI Zhaofang, DU Shuanping. Multiplicative *-Lie isomorphisms between factors[J]. Journal of Mathematical Anap- plications,2008,346 : 327-335.
  • 2BAI Zhaofang, DU Shuanping. Multiplieative * -Lie isomorphisms between von Neumann algebras[J]. Linear and Mul- tilinear Algebra,2012,60(3) :311-322.
  • 3CUI Jianlian, LI Chikwong. Maps preserving product XY-YX" on factor von Neumann algebras[J-1. Linear Algebra and its Applications, 2009,431 : 832-842.
  • 4BAI Zhaofang,DU Shuanping. Maps preserving product XY-YX * on von Neumann algebras[J]. Jornal of Mathematical Analysis and Applications, 2012,386 : 103-109.
  • 5LIU Lei,JI Guoxing. Maps preserving product X* YbYX on factor yon Neumann algebras[J]. Linear and Multlinear Algebra, 2011,59 : 951-955.
  • 6BAI Zhaofang. DU Shuanping. The structure of nonlinear Lie derivation on yon Neummann algebras[J]. Linear Algebra and its Applications,2012,436,2 701-2 708.
  • 7LI Changjing,LU Fangyan,FANG Xiaochun. Nonlinear mappings preserving product XY+ YX" on factor von Neu- mann algebras[J]. Linear Algebra and its Applications,2012,438(5):2 339-2 345.
  • 8JOHN B Conway. A course in operator theory[M]. Rhode Island: American Mathematical Society,2000.
  • 9A LEXEY E. Rastegin. Some General Properties of Unified Entropies [ J ]. J Stat Phys,2011,143 (6) :1120 - 1135.
  • 10NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information [ M ]. Cambridge:Cambridge University press, 2005:519 - 523.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部