摘要
The effect of high-energy electropulsing-ultrasonic surface treatment(EUST) on the surface properties and the microstructure evolution of C45 E4 steel was investigated. Refined microstructure and reduced surface roughness were obtained owing to the surface nanocrystallization process. Compared with the ultrasonic surface treatment(UST), the impact depth of the surface strengthened layer was increased by 40% to 700 μm after EUST. The average grain size of the surface nanocrystallization layer was reduced to 30-50 nm. The surface roughness of the C45 E4 steel was reduced to 0.25 μm, and the surface microhardness was dramatically enhanced to 460 HV. The improvement of microstructure and micro-hardness at ambient temperature was likely attributed to the acceleration of atomic diffusion and the enhancement of plastic deformation ability in the surface strengthened layer under the influence of electropulsing. Due to the electropulsing-assisted ultrasonic strengthening effect, the surface nanocrystallization in this ultrafast procedure was noticeably enhanced.
The effect of high-energy electropulsing-ultrasonic surface treatment(EUST) on the surface properties and the microstructure evolution of C45 E4 steel was investigated. Refined microstructure and reduced surface roughness were obtained owing to the surface nanocrystallization process. Compared with the ultrasonic surface treatment(UST), the impact depth of the surface strengthened layer was increased by 40% to 700 μm after EUST. The average grain size of the surface nanocrystallization layer was reduced to 30-50 nm. The surface roughness of the C45 E4 steel was reduced to 0.25 μm, and the surface microhardness was dramatically enhanced to 460 HV. The improvement of microstructure and micro-hardness at ambient temperature was likely attributed to the acceleration of atomic diffusion and the enhancement of plastic deformation ability in the surface strengthened layer under the influence of electropulsing. Due to the electropulsing-assisted ultrasonic strengthening effect, the surface nanocrystallization in this ultrafast procedure was noticeably enhanced.
基金
Funded by the Natural Science Foundation of China(No.50571048)
the Research & Development Funding Project of Shenzhen(No.JCYJ20120619152539900)