期刊文献+

化工生产过程精细化管理信息系统 被引量:3

Meticulous management information system for chemical production process
原文传递
导出
摘要 由于化工生产在操作、安全、管理和数据模式具有不同于其他生产过程的显著特点,生产过程精细化管理在化工行业的应用存在相当的难度,精细管理的本质意义就在于它是一种对目标分解、细化和落实的过程,要用具体、明确的量化标准取代笼统、模糊的管理要求,从而实现由传统经验管理向科学化管理的转变。本文立足于解决目前在实现化工生产精细化管理过程中遇到的数据安全可靠、全面系统、及时准确和标准可用的难题,综合运用实时数据库系统中的智能分析计算模块,有效地整合近红外光谱检测、现场移动作业管理、企业资源计划和商务智能不同层面的信息化技术手段,研究如何通过生产过程精细化管理信息系统满足企业提升产品质量、能效、收率及设备可靠性、释放产能和量化班组考核的实际需求。最终,将研究结果在中国蓝星多套化工生产装置中投入实际应用,为化工生产装置提供一套信息全生命周期内安全可控的精细化管理支持系统解决方案。 Meticulous management is a method for target decomposition, refinement and implementation process, from vague management requirements to specific, clear quantitative criteria. Because chemical production process is different with general production process in operation, safety, management and data model, it's very difficult for executing fine management in chemical production process. In this paper, problems about information safety, how to obtain comprehensive, timely and accurate data, and available standard in chemical production process meticulous management can be solved through information system, this system combines real time database technology with NIR, intelligent equipment management, ERP and BI for realizing fine management. Under the help of this information system, quantitative assessment of every operation shift can be realized, and Bluestar chemical enterprises' product quality, energy efficiency, yield, equipment reliability had all been increased sharply.
作者 胡庚松 苏岳龙 马天明 姚坤明 HU Gengsong;SU Yuelong;MA Tianming;YAO Kunming(Nantong Fire Detachment, Nantong 226001, Jiangsu, China;China National Bluestar (Group) Co., Ltd, Beijing 100029, China;Nantong Xingchen Synthetic Material Co Ltd, Nantong 226001, Jiangsu, China 4. Xinghuo Organic Silicone Plant, Jiujiang 330316, Jiangxi, China)
出处 《计算机与应用化学》 CAS 2017年第11期909-917,共9页 Computers and Applied Chemistry
关键词 精细化管理 化工生产 信息系统 meticulous management chemical production process information system
  • 相关文献

参考文献4

二级参考文献19

  • 1赖社光.推行精细化管理 全面提升办公室服务水平[J].秘书工作,2007(12):24-25. 被引量:9
  • 2史兴华.供电企业实时/历史数据库PI典型应用案例[M].北京:中国电力出版社,2009.
  • 3温德诚.精细化管理(二)[M].北京:新华出版社,2006.
  • 4周东华,李钢,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011:23-29.
  • 5Junichi Moil, Jie Yu. A quality relevant non-gaussian latent subspace projection method for chemical process monitoring and fault detection. American Institute of Chemical Engineers, 2014, 60(2):485-499.
  • 6Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, Kewen Yin. A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers & Chemical Engineers, 2003, 27(3):293-311.
  • 7Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, Kewen Yin. A review of process fault detection and diagnosis Part III: Process history based methods. Computers & Chemical Engineers, 2003, 27(3):327-346.
  • 8Neal B Gallagher, Barry M Wise. Application of multi-way principal components analysis to nuclear waste storage tank monitoring. Computers & Chemical Engineers, 1999, 20(3): 739-744.
  • 9R Srinivasan, C Wang, W K Ho. Dynamic principal component analysis based methodology for clustering process states in agile chemical plants. Ind. Eng. Chem. Res., 2004, 43(9):2123-2139.
  • 10Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis. New York: Prentice-Hall, 1998.

共引文献67

同被引文献18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部