期刊文献+

一种简捷的旅游景点推荐方法

下载PDF
导出
摘要 面对旅游业的快速发展及旅游信息的爆炸式增长,景点推荐不仅能节约游客搜索旅游信息的时间,还能给他们带来许多便利。提出一种简捷的旅游景点推荐方法,通过获取旅游平台上用户对旅游景点的访问量、收藏数及点击率等信息,采用基于用户的协同过滤算法来为游客进行景点推荐。实验结果表明,该方法是正确可行的,并且用户对推荐结果满意度较高。
出处 《电脑编程技巧与维护》 2017年第24期11-13,16,共4页 Computer Programming Skills & Maintenance
基金 2016年四川文理学院重点项目(2016KZ002Z)
  • 相关文献

参考文献6

二级参考文献35

  • 1余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 2Herlocker J L,Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering [ C]// SIGIR 99:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Re- trieval. 1999 : 230-237.
  • 3Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C] // Pro- ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. 1994:175-186.
  • 4Adomavieius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: a Survey of the State-of-the-art and Possible Extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (6) : 734-749.
  • 5Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International World Wide Web Conference. New York, 2001 : 285-295.
  • 6Breese J, Hecherman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 98). 1998:43-52.
  • 7Wang J, Vries A, Reinders M. Unifying User-based and Item- based Collaborative Filtering Approaches by Similarity Fusion [C]//SIGIR 06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2006 :501-508.
  • 8Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating 'Word of Mouth' [C] // Proceeding of the Con- ference on Human Factors in Computing Systems. 1995:210-217.
  • 9Miller B N, Albert I, Lain S K, et al. MovieLens Unplugged.. Ex- periences with an Occasionally Connected Recommender System [C]// IUI 03: Proceedings of the 8th International Conference on Intelligent User Interfaces New York, 2003:263-266.
  • 10Breese J,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering.In:Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence,San Francisco,CA,July 1998:43-52.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部